K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: S CAB=1/2*CM*AB

S CAD=1/2*CN*AD

mà ΔCAB=ΔCAD

nên CM*AB=CN*AD

b: Xét ΔAID vuông tại I và ΔANC vuông tại N có

góc IAD chung

=>ΔAID đồng dạng với ΔANC

=>AI/AN=AD/AC

=>AI*AC=AN*AD

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>HC/NA=CB/AC

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có

BA=DC

góc HAB=góc ICD

=>ΔHBA=ΔIDC

=>AH=IC

b: Xét tứ giác BHDI có

BH//DI

BH=DI

=>BHDI là hình bình hành

c; S CAB=AB*CM/2

S DAC=1/2*CN*AD

mà ΔCAB=ΔDAC

nên AB*CM=CN*AD

Xét ΔAHB vuông tại H và ΔAMC vuông tại M có

góc HAB chung

=>ΔAHB đồng dạng với ΔAMC

=>AH/AM=AB/AC

=>AB*AM=AH*AC

Xét ΔHCB vuông tại H và ΔNAC vuông tại N có

góc HCB=góc NAC

=>ΔHCB đồng dạng với ΔNAC

=>CB/AC=HC/NA

=>CB*NA=HC*AC=AD*AN

=>AD*AN+AB*AM=AC^2

22 tháng 2 2018

a) Xét tam giác ABH và tam giác CID có :

AB = CD ( gt )

\(\widehat{AHB}=\widehat{CID}=90^0\)

\(\widehat{BAH}=\widehat{ICD}\)

\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)

\(\Rightarrow\)\(AH=CI\)

c) \(CM\perp AB\Rightarrow CM\perp CD\)

\(CN\perp AD\Rightarrow CN\perp BC\)

Xét tam giác BCM và tam giác CDN có :

\(\widehat{BMC}=\widehat{CND}\)

\(\widehat{MCB}=\widehat{DCN}\)

Suy ra tam giác BCM = tam giác CDN

\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)

mà BC = AD và DC = AB

Suy ra AB.CM = CN.AD

22 tháng 2 2018

a. Xét tam giác ABH và tam giác CDI vuông lần lượt tại H và I có:

AB = CD ( gt)

góc ABH = ICD (gt)
Do đó tam giác ABH = CDI ( cạnh huyền- góc nhọn)

=> AH = CI ( 2 cạnh tương ứng)

22 tháng 2 2018

Xét tam giác ABH và tam giác ACM có:

góc A chung

góc AHB = góc AMC = 90o

Do đó tam giác ABH đồng dạng tam giác ACM ( g-g)

10 tháng 11 2021
1 tháng 8 2021

em nào địt ko

19 tháng 8 2018

a)  ABCD là hình bình hành có O là giao AC và BD

=>  OA=OC;     OB = OD  

M, N lần lượt là trung điểm OB,OD  =>  OM = 1/2 OB;    ON = 1/2 OD

suy ra:OM = ON

Tứ giác AMCN có OA=OC;  OM = ON

=>  AMCN là hình bình hành

b) Tứ giác AECF có: AE // CF;   AF // CE

=>  AECF là hình bình hành

mà O là trung điểm AC

=>  AC và EF giao tại O

Vậy AC, BD, EF  đồng quy tại O