K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2022

a:góc ABD=góc DCA

góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)

góc FAD=góc CAD

=>góc ABD=góc CBD

=>BD là phân giác của góc ABE

mà góc ADB=90 độ

nên BD là đường cao

=>ΔBAE cân tại B

b: Xét ΔEAB có

AC,BD là các đường cao

AC cắt BD tại K

Do đó: K là trực tâm

=>EK vuông góc với BA

c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác

nên ΔAKF cân tại A

=>góc AKF=góc AFK=góc KFE

=>AK//FE

Xét tứ giác AKEF có

AK//FE

AF//KE

KE=KA

Do đó: AKEF là hình thoi

23 tháng 6 2017

Đường kính và dây của đường tròn

26 tháng 1 2016

kho..................wa...........................troi.....................thi.....................rer...................lam sao duoc........................huhu.....................tich......................ung.......................ho........................minh..................cai...................cho....................do....................ret

28 tháng 1 2016

AMB=ANB=90 ( góc nội tiếp chắn nửa đường tròn )=> AN và BM là 2 đường cao => D là trực tâm tam giác ABC => CD vuông AB

3 tháng 3 2020

O A B C M K H E d P F I

1) Dễ thấy \(\widehat{HCB}=\widehat{ACB}=90^o\)

tứ giác CBKH có \(\widehat{HKB}=\widehat{HCB}=90^o\)nên là tứ giác nội tiếp

\(\Rightarrow\widehat{HCK}=\widehat{HBK}\)( 1 )

Mà \(\widehat{ACM}=\widehat{ABM}=\frac{1}{2}sđ\widebat{AM}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{ACM}=\widehat{ACK}\)

2) Xét \(\Delta AMC\)và \(\Delta BEC\)có :

AM = BE ; AC = BC ; \(\widehat{MAC}=\widehat{CBE}=\frac{1}{2}sđ\widebat{MC}\)

\(\Rightarrow\Delta AMC=\Delta BEC\)( c.g.c )

\(\Rightarrow MC=EC\)

Ta có : \(\widehat{CMB}=\frac{1}{2}sđ\widebat{BC}=45^o\)

Suy ra \(\Delta ECM\)vuông cân tại C

3) Ta có : \(\frac{AP.MB}{AM}=R=OB\Rightarrow\frac{AP}{MA}=\frac{OB}{MB}\)

Xét \(\Delta APM\)và \(\Delta OBM\), ta có :

\(\frac{AP}{MA}=\frac{OB}{MB}\)\(\widehat{PAM}=\widehat{MBO}=\frac{1}{2}sđ\widebat{AM}\)

\(\Rightarrow\Delta APM\approx\Delta BOM\left(c.g.c\right)\)

\(\Rightarrow\Delta APM\)cân tại P ( vì \(\Delta BOM\)cân tại O )

\(\Rightarrow PA=PM\)

Gọi giao điểm của BM và ( d ) là F ; giao điểm của BP với HK là I

Xét tam giác vuông AMF có PA = PM nên PA = PM = PF

Theo định lí Ta-let, ta có :

\(\frac{HI}{FP}=\frac{BI}{BP}=\frac{KI}{AP}\Rightarrow HI=KI\)

vì vậy PB đi qua trung điểm của HK

17 tháng 8 2017

a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,O ∈ đường tròn bán kính  O C 2

b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM

c,  S A C D B = A C + B D A B 2 = A D . A B 2

=>  S A C D B  nhỏ nhất khi CD có độ dài nhỏ nhất

Hay M nằm chính giữa cung AB

d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD

ta chứng minh được  C N N B = C M M D => MN//BD => MN ⊥ AB