K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

TRẢ LỜI:

Xét tam giác AHB vuông tại H

Áp dụng định lí Py-ta-go ta có:

AB2 = AH2+ HB2 (1)

Xét tam giác AHC vuông tại H

Áp dụng định lí Py-ta-go ta có:

AC2 = AH2 + HC2 (2)

Nếu HB > HC ⇒ HB2 > HC2.

⇒ AH2 + HB2 > AH2+ HC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AB2 > AC

⇒ AB > AC

13 tháng 2 2019

- Nếu HB = HC ⇒ HB2 = HC2.

⇒ AH2 + HB2 = AH2 + HC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AB2 = AC2

⇒ AB = AC

- Nếu AB = AC ⇒ AB2 = AC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AH2 + HB2 = AH2 + HC2

⇒ HB2 = HC2

⇒ HB = HC

23 tháng 9 2017

AB > AC ⇒ AB2 > AC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AH2 + HB2 > AH2 + HC2

⇒ HB2 > HC2

⇒ HB > HC

25 tháng 10 2019

Xét tam giác AHB vuông tại H

Áp dụng định lí Py-ta-go ta có:

AB2 = AH2 + HB2 (1)

Xét tam giác AHC vuông tại H

Áp dụng định lí Py-ta-go ta có:

AC2 = AH2 + HC2 (2)

Nếu HB > HC ⇒ HB2 > HC2.

⇒ AH2 + HB2 > AH2 + HC2

Kết hợp với 2 điều kiện (1) và (2)

⇒ AB2 > AC2

⇒ AB > AC

2 tháng 4 2023

`@ AB = AC`

Xét `\triangle ABH` vuông tại `H` và `\triangle ACH` vuông tại `H` có:

  `{:(AB=AC),(AH\text{ là cạnh chung}):}}=>\triangle ABH =\triangle ACH` (ch+1cgv)

   `=>HB=HC` (`2` cạnh t/ứ)

`@HB=HC`

Chứng mình tương tự giống trường hợp trên.

2 tháng 4 2023

YAHUSA Y ở yêu cầu đề câu b có 2 ý.

- Ý thứ nhất: Nếu AB = AC thì HB = HC.

   => Đề ở đây có nghĩa là: cho AB = AC và chứng minh HB = HC.

- Ý thứ hai tương tự cách hiểu của ý thứ nhất.

Xét ΔABC có AB<AC(gt)

mà hình chiếu của AB trên BC là HB

và hình chiếu của AC trên BC là HC

nên HC>HB

19 tháng 4 2017

a) AB > AH; AC > AH.

b) Nếu HB > HC thì AB > AC.

hoặc có thể HB < HC thì AB < AC.

c) Nếu AB > AC thì HB > HC.

hoặc có thể AB < AC thì HB < HC.

19 tháng 4 2017

Trả lời

a) AB > AH; AC > AH.

b) Nếu HB > HC thì AB > AC.

hoặc có thể HB < HC thì AB < AC.

c) Nếu AB > AC thì HB > HC.

hoặc có thể AB < AC thì HB < HC.

30 tháng 6 2016

a) AB.>..AH; AC.>..AH

b) Nếu HB..>.HC thì AB.>..AC

Nếu HB..<.HC thì AB.<..AC

c) Nếu AB.<..AC thì HB.<..HC

Nếu AB.>..AC thì HB..>.HC

13 tháng 6 2020

tròn 1 điểm:33333 chế lại làm theo định lý pytago 

ta có BH^2=AB^2-AH^2( áp dụng định lý pytago)

HC^2=AC^2-AH^2( áp dụng định lý pytago)

vì AB>AC=> AB^2>AC^2=> AB^2-AH^2>AC^2-AH^2=> BH^2>HC^2 => BH>CH (BH,CH>0)

làm thêm thui chứ cách của bạn ngắn hơn và đúng:33333