Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
a, Thay m=3 vào hpt ta có :
\(\left\{{}\begin{matrix}2x+3y=3\\-5x+y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=3\\-15x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=3\\17x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{17}\\y=\frac{43}{51}\end{matrix}\right.\)
hệ pt <=> 2x+3y = 4
2x-2y = 2m
<=> 5y = 4-2m
x-y = m
<=> y = 4-2m/5
x = 3m+4/5
a, Với m = 1 thì : x = 7/5 ; y = 2/5
b, Để hệ có nghiệm x>0 ; y> 0 thì :
4-2m/5 > 0 và 3m+4/5 > 0
<=> 4-2m > 0 và 3m+4 > 0
<=> m < 2 và m > -4/3
<=> -4/3 < m < 2
Tk mk nha
a) Khi \(k=1\) ta có hệ phương trình: \(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2x-y=1+5\\2x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=2x-5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(2;-1\right)\).
b) Ta có: \(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+2x-y=3k-2+5\\2x-y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x=3k+3\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k+1\\y=2x-5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=k+1\\y=2k-3\end{matrix}\right.\)
Điều kiện: \(y+1\ne0\Leftrightarrow y\ne-1\Leftrightarrow2k-3\ne-1\Leftrightarrow k\ne1\)
\(\dfrac{x^2-y-5}{y+1}=4\Leftrightarrow x^2-y-5=4y+4\\ \Leftrightarrow\left(k+1\right)^2-\left(2k-3\right)-5=4\left(2k-3\right)+4\\ \Leftrightarrow k^2+2k+1-2k+3-5=8k-12+4\\ \Leftrightarrow k^2-8k+7=0\Leftrightarrow\left(k-1\right)\left(k-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}k-1=0\\k-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k=1\\k=7\end{matrix}\right.\)
Kết hợp điều kiện \(k\ne1\) ta được \(k=7\) là giá trị cần tìm.
a)Khi k = 1 thì ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}3x=6\\x+y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\2+y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy ...
\(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\)
a, Với \(m=3\) ta có:
\(\hept{\begin{cases}x+y=2\\2x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2\left(2-y\right)+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+2y=4\left(1\right)\\2x+my=5\left(2\right)\end{cases}}\)
Ta lấy \(\left(1\right)-\left(2\right)\) ta được: \(y\left(2-m\right)=-1\)
Với \(m\ne2\) hpt có nghiệm duy nhất là: \(\hept{\begin{cases}y=-\frac{1}{2-m}\\x=2-\frac{-1}{2-m}=\frac{5-2m}{2-m}\end{cases}}\)
Ta có: \(\hept{\begin{cases}y>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2-m}>0\\\frac{5-2m}{2-m}< 0\end{cases}}\) \(\Leftrightarrow2-m< 0\) hoặc \(\orbr{\begin{cases}5-2m>0.hoac.2-m< 0\\5-2m< 0.hoac.2-m>0\end{cases}}\)
\(\Leftrightarrow m>2\) hoặc \(\orbr{\begin{cases}2< m< \frac{5}{2}\\m< 2,m>\frac{5}{2}\end{cases}}\Leftrightarrow2< m< \frac{5}{2}\)
Vậy .............
Bạn Băng !
<=> \(2-m< 0\) và \(\orbr{\begin{cases}...\\...\end{cases}}\)
( không phải là " hoặc " )
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:
\(\left(m-1\right)x+2\left(x-2\right)=m+1\)
\(\Leftrightarrow\left(m+1\right)x=m+5\)
Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\). \(\Rightarrow x=\dfrac{m+5}{m+1}\)
\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).
Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).
Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)
Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
=>10x+15y=5m và -10x+2y=-2
=>17y=5m-2 và -5x+y=-1
=>y=5/17m-2/17 và 5x-y=1
=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17
=>y=5/17m-2/17 và x=1/17m+5/17
x>0; y>0
=>5m-2>0 và m+5>0
=>m>2/5