K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 2 giải hệ phương trình
2x-y=1
x^2+xy+2y^2=4
=> y = 2x - 1
Thay vao x^2 + xy + 2y^2 = 4
<=> x^2 + x.(2x - 1) + 2.(2x - 1)^2 = 4
<=> x^2 + 2x^2 - x + 2.(4x^2 - 4x + 1) = 4
<=> x^2 + 2x^2 - x + 8x^2 - 8x + 2  - 4 = 0
<=> 11x^2 - 9x - 2 = 0
=> x = 1 => y= 1
hoac x = -2/11 => y = -15/11

Bài 2 giải hệ phương trình
2x-y=1 
x^2+xy+2y^2=4 (*)
Ta có 2x-y=1 suy ra y=2x-1 (1)
(1) thay vào (*) ta được 5x^2-5x-2=0 Bấm máy tính giải pt bậc 2 là ra bạn

17 tháng 1 2022

a) \(\left\{{}\begin{matrix}mx+y=1.\\x+my=m+1.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-mx.\\x+m\left(1-mx\right)=m+1.\left(1\right)\end{matrix}\right.\) 

Xét (1): \(x+m\left(1-mx\right)=m+1.\Leftrightarrow x+m-m^2x-m-1=0.\Leftrightarrow\left(1-m^2\right)x-1=0.\left(2\right)\)

Để hệ phương trình có nghiệm duy nhất. \(\Leftrightarrow\) (2) có nghiệm duy nhất. 

\(\Leftrightarrow1-m^2\ne0.\Leftrightarrow m^2\ne1.\Leftrightarrow m\ne\pm1.\)

b) Để hệ phương trình có vô số nghiệm. \(\Leftrightarrow\) (2) có vô số nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1=0.\end{matrix}\right.\) (vô lý).

\(\Rightarrow m\in\phi\).

c) Để hệ phương trình có vô nghiệm. \(\Leftrightarrow\) (2) có vô nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1\ne0.\end{matrix}\right.\)\(\Leftrightarrow1-m^2=0.\Leftrightarrow m^2=1.\Leftrightarrow m=\pm1.\)

 

20 tháng 3 2021

Bài 1 : x² + x² -12 = 0

a = 1 , b = 1 , c = -12

∆ = 1 -4 × 1 × (-12) 

∆ = 49 > 0 .✓49 =7

Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !

1 tháng 12 2021

\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)

Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)

\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

19 tháng 12 2017

Ta có  m − 1 x − m y = 3 m − 1 2 x − y = m + 5 ⇔ y = 2 x − m − 5 m − 1 x − m 2 x − m − 5 = 3 m − 1

⇔ y = 2 x − m − 5 m − 1 x − 2 m x + m 2 + 5 m = 3 m − 1 ⇔ y = 2 x − m − 5 − m − 1 x = − m 2 − 5 m + 3 m − 1 ⇔ y = 2 x − m − 5 m + 1 x = m 2 + 2 m + 1 ⇔ y = 2 x − m − 5     1 m + 1 x = m + 1 2     2

Để hệ phương trình có nghiệm duy nhất thì phương trình (2) có nghiệm duy nhất hay m ≠ − 1

Khi đó từ phương trình (2) ta suy ra x = m + 1 2 m + 1 = m + 1 , thay x = m + 1vào phương trình (1) ta được y = 2 (m + 1) – m – 5 = m – 3

Vậy với  m ≠ − 1  thì hệ đã cho có nghiệm duy nhất (x; y) = (m + 1; m – 3)

Ta xét S = x 2 + y 2 = ( m + 1 ) 2 + ( m – 3 ) 2 = m 2 + 2 m + 1 + m 2 − 6 m + 9

= 2 m 2 – 4 m + 10 = 2 ( m 2 – 2 m + 1 ) + 8 = 2 ( m – 1 ) 2 + 8

Vì ( m   –   1 ) 2   ≥ 0 ;   ∀ m ⇒ 2 ( m – 1 ) 2 + 8 ≥ 8 ; ∀ m

Hay S ≥ 8 ; ∀ m . Dấu “=” xảy ra khi m–1 = 0 ⇔ m=1 (TM)

Vậy m = 1 là giá trị cần tìm

Đáp án: A