Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:
`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`
`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`
`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`
`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`
`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`
`b){((m-1)x-2y=1),(3x+my=1):}`
`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`
`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`
`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`
`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`
Mà `-m^2+m-6` luôn `ne 0`
`=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`
`=>AA m` thì hệ ptr có `1` nghiệm duy nhất
`c){((m-1)x-2y=1),(3x+my=1):}`
`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`
`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`
Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`
`=[-3m-6-12+3m]/[-3(m^2-m+6)]`
`=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`
Vì `(m-1/2)^2+23/4 >= 23/4`
`<=>6/[(m-1/2)^2+23/4] <= 24/23`
Hay `x-y <= 24/23`
Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`
a: Khi m=căn 2 thì hệ sẽ là:
2x-y=căn 2+1 và x+y*căn 2=2
=>\(\left\{{}\begin{matrix}2x-y=\sqrt{2}+1\\2x+2y\sqrt{2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2y\sqrt{2}=\sqrt{2}-3\\2x-y=\sqrt{2}+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1+\sqrt{2}\\2x=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\sqrt{2}-1\end{matrix}\right.\)
b: Để hệ có nghiệm thì 2/1<>-1/m
=>-1/m<>2
=>m<>-1/2
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
\(\left\{{}\begin{matrix}x-y=1\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m\left(1+y\right)+y=m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\m+my+y=m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y\left(m+1\right)=0\end{matrix}\right.\) (*)
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\) m + 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) -1
Khi đó: (*) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+y\\y=\dfrac{0}{m+1}=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1+0=1\\y=0\end{matrix}\right.\)
Vậy m \(\ne\) -1 thì hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Chúc bn học tốt!
Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:
\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)
Thế vào pt đầu:
\(m.1+2.7=18\Rightarrow m=4\)
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-3y=1\\x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-8\\x+y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=9-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=7\\y=2\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{1}\ne\dfrac{-m}{1}\)
\(\Leftrightarrow-m\ne1\)
hay \(m\ne-1\)
Vậy: Để hệ phương trình có nghiệm duy nhất thì \(m\ne-1\)
c) Để hệ phương trình có vô số nghiệm thì \(\dfrac{1}{1}=\dfrac{-m}{1}=\dfrac{1}{m^2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m=1\\m^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)
Vậy: Để hệ phương trình có vô số nghiệm thì m=-1
\(\left\{{}\begin{matrix}x+2y=5m-1\\-2x+y=2\end{matrix}\right.< =>\left\{{}\begin{matrix}2x+4y=10m-2\\-2x+y=2\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}5y=10m\\-2x+y=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=2m\\x=m-1\end{matrix}\right.\)
=>\(\sqrt{x}+\sqrt{y}=\sqrt{2}\left(1\right)\)
=>\(\sqrt{m-1}+\sqrt{2m}=\sqrt{2}\) (\(m\ge1\))
\(< =>\left(\sqrt{m-1}\right)^2=|\left(\sqrt{2}-\sqrt{2m}\right)^2|\)
<=>\(m-1=\left[\sqrt{2}.\left(1-\sqrt{m}\right)\right]^2< =>m-1=|2.\left(1-\sqrt{m}\right)^2|\)
<=>\(m-1=|2\left(1-2\sqrt{m}+m\right)|=\left|2-4\sqrt{m}+2m\right|\)
với \(\left|2-4\sqrt{m}+2m\right|=2-4\sqrt{m}+2m< =>m\le1\)
ta có pt:
<=>\(m-1-2+4\sqrt{m}-2m=0\)
\(< =>-m+4\sqrt{m}-3=0< =>-\left(m-4\sqrt{m}+3\right)=0\)
<=>\(m-4\sqrt{m}+3=0< =>\left(\sqrt{m}-3\right)\left(\sqrt{m}-1\right)=0\)
<=>\(\left[{}\begin{matrix}\sqrt{m}-3=0\\\sqrt{m}-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}m=9\left(loai\right)\\m=1\left(TM\right)\end{matrix}\right.\)
nếu \(|2-4\sqrt{m}+2m|=-2+4\sqrt{m}-2m< =>m\ge1\)
=>\(-2+4\sqrt{m}-2m=m-1< =>3m-4\sqrt{m}+1=0\)
<=>\(3\left(m-2.\dfrac{2}{3}\sqrt{m}+\dfrac{1}{3}\right)=3\left(m-2.\dfrac{2}{3}\sqrt{m}+\dfrac{4}{9}-\dfrac{4}{9}+\dfrac{1}{3}\right)=0\)
<=>\(\left(\sqrt{m}-1\right)\left(\sqrt{m}-\dfrac{1}{3}\right)=0\)=>\(\left[{}\begin{matrix}\sqrt{m}-1=0\\\sqrt{m}-\dfrac{1}{3}=0\end{matrix}\right.< =>\left\{{}\begin{matrix}m=1\left(TM\right)\\m=\dfrac{1}{3}\left(loai\right)\end{matrix}\right.\)
vậy m=1 thì pt đã cho có 2 nghiệm (x,y) thỏa mãn
\(\sqrt{x}+\sqrt{y}=\sqrt{2}\)