K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

E M N A B C D K I H

Bài làm

Trên tia KN, kẻ tia đối của tia KN cắt AD tại I.

Gọi giao điểm của NE và AD là H

Xét tứ giác ABCD vuông tại A có: ( Vì ABCD là hcn )

M là trung điểm AD

N là trung điểm BC

=> MN là đường trung bình.

=> MN // AB // DC ( tính chất đường trung bình của một hình tứ giác )

Mà \(AB\perp AD\)

      \(CD\perp AD\)

=> \(MN\perp AD\)

Xét tam giác INH có:

MN  |  AD

M là trung điểm của AD

=> MN là đường trung trực của tam giác INH

=> IN =  IH ( tính chất đường trung trực )

=> Tam giác INH là tam giác cân.

Mà MN là đường cao của \(\widehat{INH}\)

hay MN là đường cao của \(\widehat{KNE}\)

=> MN là đường phân giác của \(\widehat{KNE}\) ( đpcm )

# Học tốt #

a: M đối xứng E qua AB

=>AB là đường trung trực của ME

=>AB\(\perp\)ME tại I và I là trung điểm của ME

Ta có: M đối xứng F qua AC

=>AC là đường trung trực của MF

=>AC\(\perp\)MF tại K và K là trung điểm của MF

Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Ta có: AKMI là hình chữ nhật

=>AK//MI và AK=MI; KM//AI và KM=AI

Ta có: MI//AK

I\(\in\)ME

Do đó: IE//AK

Ta có: AK=IM

IM=IE

Do đó: AK=IE

Ta có: AI=MK

MK=KF

Do đó: AI=KF

Ta có: AI//MK

K\(\in\)MF

Do đó: AI//KF

Xét tứ giác AKIE có

AK//IE

AK=IE

Do đó: AKIE là hình bình hành

=>KI//AE và KI=AE

Xét tứ giác AIKF có

AI//KF

AI=KF

Do đó: AIKF là hình bình hành

=>KI//AF và KI=AF

Ta có: KI//AF

KI//AE

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

Ta có: KI=AE

KI=AF

Do đó: AE=AF

mà E,A,F thẳng hàng

nên A là trung điểm của EF

29 tháng 11 2021

ok

29 tháng 11 2021

a: Xét tứ giác ADCP có 

N là trung điểm của AC
N là trung điểm của DP

Do đó: ADCP là hình bình hành

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: BC=2MN

hay BC=6(cm)