Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cm tứ giác MNCP là hình bình hành
Xét \(\Delta AHB\)có:
MA = MH ( vì M là trung điểm của AH )
NH = NB ( vì N là trung điểm của BH )
Vậy => MN là đường trung bình của \(\Delta AHB\)
=> MN // AB và MN = 1/2 AB
Mà AB = CD ( vì ABCD là hình chữ nhật )
Vậy => MN // CD và MN = 1/2 CD
mà PC = 1/2 CD ( Vì P là trung điểm của CD )
Vậy => MN // CP và MN = CP
=> MNCP là hình bình hành
b) cm N là trực tâm của \(\Delta MBC\)
Vì MNCP là hình bình hành ( theo cm phần a )
=> MN // CP
Mà \(CP\perp BC\)( vì ABCD là hình chữ nhật )
Vậy => \(MN\perp BC\)
Xét \(\Delta CMB\)có
BH và MN cắt nhau tại M
\(MN\perp CB\left(cmt\right)\)
\(BH\perp MC\left(theogt\right)\)
Vậy => N là trực tâm của \(\Delta MBC\)
c) cm MP vuông góc với MB
Vì N là trực tâm của \(\Delta MBC\)( theo cm phần b )
=> \(CN\perp MB\)
Mà \(CN//MP\)( vì MNCP là hình bình hành )
Vậy => \(MB\perp MP\)
d) gọi I là trung điểm của BP và J là giao điểm của AC và NP
cm 2( MI - IJ ) < NP
Vì \(MB\perp MP\)( theo cm phần c )
=> \(\Delta BMP\)vuông tại M
Mà I là trung điểm của BP
Vậy => MI = IB = IP = 1/2 BP
Xét \(\Delta IJP\)có:
( IP - IJ ) < JP
=> 2(IP - IJ) < 2JP
mà IP = IP ( theo cmt )
2JP = PN ( vì I là trung điểm của PN )
Vậy => 2(MI - IJ) < NP
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ