K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IEbài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HNbài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC...
Đọc tiếp

 

 

bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IE

bài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HN

bài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC tại I. CMR:KI//CD

bài 4: cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Lấy M,N thuộc BH và DC sao cho BM/MH =CN/ND.CMR:góc AMN = 90 độ

bài 5:cho tam giác ABC đều. Một đường song song AC cắt AB và BC theo thứ tự tại I và J, gọi K là trung điểm AJ và O là trọng tâm tam giac BIJ. Tính các góc tam giác OKC

anh chị nào thông minh giải hộ em mấy bài này với, em hứa là sẽ có hoa hồng cho anh chị.

0
Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .a ) Chứng minhcác tam giác ABD và ACD vuôngb ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = IDBài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DCa ) Tính các góc BAD và góc DACb ) Chứng minh tứ giác ABCD là hình thang cân c ) Gọi...
Đọc tiếp

Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .

a ) Chứng minhcác tam giác ABD và ACD vuông

b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID

Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ ,  kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC

a ) Tính các góc BAD và góc DAC

b ) Chứng minh tứ giác ABCD là hình thang cân 

c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi

Bài 3 :  Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .

a) Cminh : tam giác AEF vuông cân 

b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD 

c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD 

3
30 tháng 10 2019

Bài 1

A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC 

Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)

Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)

Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông 

b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD

Suy ra \(IA=IB=IC=ID\)

30 tháng 10 2019

Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)

Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)

b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)

Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)

Vậy ABCD là hình thang cân

c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)

\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)

Suy ra ABED là hình bình hành 

Mà ta còn có AB=EB 

Vậy ABED là hình thoi