Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0185u > 0\), phản ứng là tỏa năng lượng.
Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0185.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,342MeV.\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)
Mà \(P_{He1} = P_{He2}\)
=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1.K_p}{2.2.m_{He}K_{He}} \)
=> \(\alpha \approx 168^039'.\)
áp dụng định lí hàm cos trong tam giác thì:
a gần bằng 168o39'( 168 độ, 39 phút)
nhớ là gần bằng thui nha
Ta có: mtrước-msau=mLi+mphôton-2mX=0,0187u>0
ð Phản ứng tỏa năng lượng
ð Wtỏa = (mtrước-msau).c2=Ksau-Ktrước
ð 0,0187u.c2=2Kx – (KP+KLi)=2KX-(2,2MeV+0)
KX»9,81MeV
Đáp án A
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)
Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_X = 0,0185u > 0\)
Phản ứng là tỏa năng lượng: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)
=> \(0,0185u.c^2 = 2K_{He} - (K_p+K_{Li}) \)
=> \(17,223 = 2K_{He} - K_p\) (do Li đứng yên nên KLi = 0)
=> \(K_{He} = 9,34 MeV.\)
bảo toàn năng lượng toàn phần => A