Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
Đáp án A
Đồ thị hàm số y = 2 x + 1 x − 1 C có M 1 ; 2 là giao điểm của 2 tiệm cận
Không có tiếp tuyến nào của (C) đi qua.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Chọn đáp án C
Để qua M có thể kẻ được ba tiếp tuyến đến (C) ⇔ g a = 0 có 2 nghiệm phân biệt khác 0
Chọn B.
Phương pháp: Sử dụng điều kiện tiếp xúc.
Cách giải:
Phương trình đường thẳng đi qua M có dạng
đây là dạng bài viết phương trình tiếp tuyến đi qua 1 điểm
cách làm tương tự như trên
ta tính \(y'=4x^3-4x=4x\left(x^2-1\right)\)
gọi \(A\left(a,b\right)\) là tọa độ tiếp điểm ta có \(y'\left(a\right)=4a^3-4a=4a\left(a^2-1\right)\)
phương trình tiếp tuyến tại A là \(y=4a\left(a^2-1\right)\left(x-a\right)+b\)(*)
vì tiếp tuyến qua điểm \(A\left(0;2\right)\)
suy ra \(a,b\) là nghiệm của hệ pt
\(\begin{cases}b=a^4-2a^2+2\\2=4a\left(a^2-1\right)\left(0-a\right)+b\end{cases}\)
gải hệ pt ta đc \(a=0;a=\pm\sqrt{\frac{2}{3}}\)
thay \(a,b\) vào pt (*) trên ta đc 3 tiếp tiếp cần tim