Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C
I.Sai ví dụ hàm số y = x 3 đồng biến trên
(−¥; +¥) nhưng y' ³ 0, "x Î (−¥; +¥)
II.Đúng
III.Đúng
Đáp án D
Dựa vào hình vẽ, ta thấy rằng
+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3
Và f '(x) đổi dấu từ - → + khi đi qua x 1 , x 3 ⇒ Hàm số có 2 điểm cực tiểu, 1 điểm cực đại
+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1 đồng biến trên x 1 ; x 2 (1) sai
+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3 (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5 (chứa khoảng (3;5)) ⇒ 2 ; 3 đúng
Vậy mệnh đề 2,3 đúng và 1, 4 sai.
Đáp án D
Khẳng định số II sai.
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng - ∞ ; - 2
Đáp án D
Khẳng định số II sai. Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( − ∞ ; − 2 )
Ta có: Hàm số y=f(x) đồng biến trên khoảng a ; b ⇔ f ' ( x ) ≥ 0 , ∀ x ∈ a ; b , chỉ bằng 0 tại hữu hạn điểm trên (a;b).
+) Hàm số y=f(x)+1 có y ' = f ' ( x ) ≥ 0 , ∀ x ∈ ( a ; b ) , chỉ bằng 0 tại hữu hạn điểm trên (a;b).
⇒ y = f ( x ) + 1 đồng biến trên (a;b).
+) Hàm số y=-f(x) có y ' = - f ' ( x ) ≤ 0 , ∀ x ∈ ( a ; b ) , chỉ bằng 0 tại hữu hạn điểm trên (a;b).
⇒ y = - f ( x ) nghịch biến trên (a;b).
+) Hàm số y=-f(x)-1 có y ' = - f ' ( x ) ≤ 0 , ∀ x ∈ ( a ; b ) , chỉ bằng 0 tại hữu hạn điểm trên (a;b).
⇒ y = - f ( x ) - 1 nghịch biến trên (a;b).
+) Hàm số y=f(x+1) có y ' = f ' ( x + 1 ) : không có nhận xét về dấu dựa vào hàm số y=f(x)
Chọn đáp án A.
Chọn A
Theo giả thiết ta có f’(x)≥0, (dấu bằng xảy ra tại hữu hạn điểm thuộc (a; b)).
Trên khoảng (a; b)
- Hàm số y = f(x)+1 có đạo hàm bằng f’(x) nên C đúng.
- Các hàm số y = - f(x)+1 và y = - f(x)-1 có đạo hàm bằng -f’(x) nên B, D đúng.
Do đó A sai