Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Từ BBT của đồ thị hàm số y = f(x) suy ra BBT của đồ thị hàm số y = f(|x|), số nghiệm của phương trình f(|x|) = 0 là số giao điểm của đồ thị hàm số y = f(|x|) và đường thẳng y = f(0)
Cách giải: Từ bảng biến thiên hàm số y = f(x) ta có bảng biến thiên hàm số f(|x|) = f(0) như sau:
Suy ra, phương trình f(|x|) = f(0) có 3 nghiệm
Vì Do đó đường thẳng y = 0 cắt đồ thị hàm số g(x) tại ba điểm phân biệt có hoành độ Vì vậy g(f(x)0
Hàm số f(x) có đồng biến trên R do đó mỗi phương trình có một nghiệm thực duy nhất.
Vậy phương trình đã cho có 3 nghiệm thực.
Chọn đáp án A.
Ta có |f(x)|=10/3→f(x)=10/3 hoặc f(x)= -10/3
Từ bảng biến thiên ta thấy:
Phương trình f(x)=10/3 có 3 nghiệm phân biệt.
Phương trình f(x)= -10/3 có 1 nghiệm
Vậy phương trình đã cho có 4 nghiệm.
Đáp án D
Có 3 f ( x ) + 4 = 0 ⇔ f ( x ) = - 4 3 Kẻ đường thẳng y = - 4 3 cắt đồ thị f(x) tại bốn điểm phân biệt. Do đó phương trình đã cho có tất cả 4 nghiệm.
Chọn đáp án C.
Đáp án B
f ( x ) − 2 = 0 ⇔ f ( x ) = 2
Dựa vào bảng biến thiên để xét sự tương giao giữa đồ thị hàm số f(x) và đường thẳng x = 2 ta thấy pt có 3 nghiệm
Đáp án B
Đương thẳng y=2 cắt đồ thị hàm số tại khoảng giữa hai điểm cực trị nên có 3 giao điểm với đồ thị.