Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi pt đt d cần tìm là: y=ax+b
vì d đi qua M(0;-2) nên ta thay x=0, y=-2 vào d: \(-2=0a+b\Leftrightarrow b=-2\)=> (d): y=ax-2
xét pt: \(2x^2=ax-2\Leftrightarrow2x^2-ax+2=0\); \(\Delta=1-4.2.2=-15
a) đồ thi của hàm số đi qua A ( 4;4 ) nên x = y = 4
Thay vào hàm số y = ax2,ta có :
4 = 42 . a\(\Rightarrow\)a = 0,25
b) gọi đường thẳng ( d ) là : y = bx + c
vì ( d ) đi qua A nên 4 = 4b + c
Xét phương trình hoành độ giao điểm, ta có : 0,25x2 = bx + c
\(\Rightarrow x^2=\frac{bx+c}{0,25}=4bx+4c\)
\(\Leftrightarrow x^2-4bx-4c=0\)
\(\Leftrightarrow x^2-4bx-4\left(4-4b\right)=0\)
\(\Leftrightarrow x^2-4bx+16b-16=0\)
( d ) tiếp xúc với ( P ) nên : \(\Delta=\left(4b\right)^2-4\left(16b-16\right)=0\)
\(=16b^2-64b+64=\left(4b-8\right)^2=0\)
\(\Leftrightarrow b=2\)
suy ra c= -4
vậy pt đường thẳng ( d ) là y = 2x - 4
Thay x=2 vào (P), ta được:
y=1/2*2^2=1/2*4=2
(d): y=ax+b đi qua A(0;-2) và B(2;2) nên ta có hệ phương trình:
0a+b=-2 và 2a+b=2
=>b=-2 và 2a=4
=>a=2 và b=-2
=>y=2x-2
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)
phương trình của đt là y=ax+b
vì d đi qua điểm (0,-2) nên thay x=0,y=-2 vào pt
-2=0a+b
b=-2
vậy phương trình đt là y=ax-2