K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

21 tháng 12 2020

a, Bảng biến thiên:

Đồ thị hàm số:

b, Phương trình hoành độ giao điểm

\(-x^2+2x+3=4x-5\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Nếu \(x=2\Rightarrow y=3\Rightarrow\left(2;3\right)\)

Nếu \(x=-4\Rightarrow y=-21\Rightarrow\left(-4;-21\right)\)

NV
30 tháng 12 2020

Pt hoành độ giao điểm:

\(-x^2+2x+3=-2x+1\)

\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)

Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)

 Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)

30 tháng 12 2020

\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)

xét phương trình hoành độ giao điểm của (P) và (d) 

\(-x^2+2x+3=-2x+1\)

\(< =>-x^2+4x+2=0\)

\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)

thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)

vậy ...

 

 

 

7 tháng 12 2016

Toán lớp 9.

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=-2x\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

6 tháng 1 2022

Phương trình hoành độ giao điểm của (P) và (d) là:

-x2 + 4x - 1 = 2x

<=> -x2 + 2x - 1 = 0

<=> -(x - 1)2 = 0

<=> x = 1 --> y = 2x = 2.1 = 2

--> (1; 2)

24 tháng 11 2016

Câu hỏi của Yến Nhi - Toán lớp 6 | Học trực tuyến

27 tháng 11 2019

toán lớp 6 thì có liên quan gì đến toán lớp 10

30 tháng 11 2023

a: Đặt y=0

=>\(x^2-3x+2=0\)

=>\(x^2-x-2x+2=0\)

=>\(x\cdot\left(x-1\right)-2\left(x-1\right)=0\)

=>(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: Tọa độ giao điểm của (P) với trục Ox là A(1;0) và B(2;0)

b: Thay x=0 vào (P), ta được:

\(y=0^2-3\cdot0+2=2\)

Vậy: (P) cắt trục Oy tại điểm C(0;2)

c: Phương trình hoành độ giao điểm là:

\(x^2-3x+2=x-1\)

=>\(x^2-3x+2-x+1=0\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Khi x=1 thì \(y=1-1=0\)

Khi x=3 thì y=3-1=2

Vậy: Tọa độ giao điểm của (P) với đường thẳng y=x-1 là D(1;0) và E(3;2)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:
a. Gọi giao điểm của $(P)$ với $Ox$ là $A$. Vì $A\in Ox$ nên $y_A=0$
$A\in (P)$ nên $y_A=x_A^2-3x_A+2$

$\Leftrightarrow 0=x_A^2-3x_A+2$

$\Leftrightarrow (x_A-1)(x_A-2)=0$

$\Leftrightarrow x_A=1$ hoặc $x_A=2$

$\Rightarrow$ tọa độ: $(2,0), (1,0)$
b.

Gọi $B$ là giao điểm của $(P)$ với $Oy$

$B\in Oy$ nên $x_B=0$

$y_B=x_B^2-3x_B+2=2$

Vậy giao điểm là $(0,2)$

c.

PT hoành độ giao điểm:

$x^2-3x+2=x-1$
$\Leftrightarrow x^2-4x+3=0$

$\Leftrightarrow (x-1)(x-3)=0$

$\Leftrightarrow x=1$ hoặc $x=3$
Nếu $x=1$ thì $y=x-1=1-1=0$

Nếu $x=3$ thì $y=x-1=3-1=2$

Vậy 2 giao điểm là: $(1,0), (3,2)$

22 tháng 12 2021

a: \(\left\{{}\begin{matrix}x_I=\dfrac{3}{2\cdot1}=\dfrac{3}{2}\\y_I=-\dfrac{\left(-3\right)^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{17}{4}\end{matrix}\right.\)