Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vẽ dễ lắm ; tự vẽ nha
b) xét phương trình hoành độ của 2 đồ thị đó
ta có : \(x^2=-2x+3\Leftrightarrow x^2+2x-3=0\)
ta có : \(a+b+c=1+2-3=0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=1\) \(\Rightarrow y=x^2=1^2=1\) vậy \(A\left(1;1\right)\)
\(x_2=\dfrac{c}{a}=-3\) \(\Rightarrow y=x^2=\left(-3\right)^2=9\) vậy \(B\left(-3;9\right)\)
vậy 2 đồ thị cắt nhau tại 2 điểm phân biệt là \(A\left(1;1\right)\) và \(B\left(-3;9\right)\)
Đáp án D
Ta có y ' = 3 x 2 - 3 ⇒ y ' ' = 6 x , y ' = 0 ⇔ x = ± 1 → y ' ' 1 > 0 y ' ' - 1 < 0 ⇒ hàm số đạt cực tiểu tại x = 1. ⇒ Điểm cực tiểu A(1;0)
Đáp án D
Ta có
Mặt khác
Tọa độ cực tiểu của đồ thị hàm số là (1;0)
Chọn B.
Do đó hàm số có cực đại là (1;2), cực tiểu là 3 ; 2 3 .
Đáp án C
Có y ' = 6 x 2 + 2 b x + c .
Hàm số đạt cực tiểu tại điểm M 1 ; − 6 ⇔ y ' 1 = 0 y 1 = − 6 ⇔ 2 b + c = − 6 b + c = − 9 ⇔ b = 3 c = − 12 .
Khi đó y ' = 6 x 2 + 6 x − 12 ; y ' = 0 ⇔ x = 1 x = − 2 . Lập bảng xét dấu thì hàm sô đạt cực đại tại x=-2. Điểm cực đại là − 2 ; 21
vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)
ta tính y' có:
\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)
vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)
thay b=-3 vào (*) ta tìm được a=-2
vậy a=-2;b=-3
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b