K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Đáp án đúng : C

10 tháng 5 2017

Chọn A.

 

Ta có y’ = x2 + 2x và y” = 2x + 2

Theo giả thiết xo là nghiệm của phương trình y”(xo) = 0

2x + 2 = 0 xo = -1

Và y’(-1) = -1

 

Phương trình tiếp tuyến tại điểm   là: y = -1.(x + 1) - 7/3

Hay .

NV
22 tháng 5 2020

\(f'\left(x\right)=2x-2\)

a/ \(f'\left(1\right)=0\) ; \(f\left(1\right)=2\)

Phương trình tiếp tuyến: \(y=2\)

b/ \(4x-2y+5=0\Leftrightarrow y=2x+\frac{5}{2}\)

Tiếp tuyến song song d nên có hệ số góc bằng 2

\(\Rightarrow2x_0-2=2\Rightarrow x_0=2\)

\(f\left(2\right)=3\)

Pt tiếp tuyến: \(y=2\left(x-2\right)+3=0\Leftrightarrow y=2x-1\)

c/ \(x+4y=0\Rightarrow y=-\frac{1}{4}x\)

Tiếp tuyến vuông góc d \(\Rightarrow\) có hsg k thỏa mãn \(k.\left(-\frac{1}{4}\right)=-1\Rightarrow k=4\)

\(\Rightarrow2x_0-2=4\Rightarrow x_0=3\) ; \(f\left(3\right)=6\)

Pt tiếp tuyến: \(y=3\left(x-3\right)+6=3x-3\)

d/ Đường phân giác góc phần thứ thứ nhất có pt \(y=x\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc -1

\(\Rightarrow2x_0-2=-1\Rightarrow x_0=\frac{1}{2}\) ; \(f\left(\frac{1}{2}\right)=\frac{9}{4}\)

Pt: \(y=-1\left(x-\frac{1}{2}\right)+\frac{9}{4}=-x+\frac{11}{4}\)

7 tháng 3 2019

 Ta có y ' = x 2 + 2 x  và y" = 2x + 2.

- Theo giả thiết x 0  là nghiệm của phương trình  y " ( x 0 )   =   0 .

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Phương trình tiếp tuyến tại điểm Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4) là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

Chọn A.

3 tháng 7 2017

- Ta có :

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Theo giả thiết x 0  là nghiệm của phương trình:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Phương trình tiếp tuyến tại điểm Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2) là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn A.

14 tháng 11 2017

- Gọi d là tiếp tuyến của đồ thị hàm số đã cho qua A( 0, 2)

→ phương trình của d có dạng: y = k(x - 0) + 2 hay y = kx + 2

- Vì d tiếp xúc với đồ thị (C) nên hệ  Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)  có nghiệm.

- Thay (2) vào (1) ta được :

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 3)

- Tương ứng với ba giá trị của x ta vừa tìm được, ta viết được 3 tiếp tuyến đi qua Ađến đồ thị (C).

Chọn B.

NV
15 tháng 5 2019

Câu 1:

\(ABCI\) là hình vuông \(\Rightarrow\left\{{}\begin{matrix}CD=\sqrt{IC^2+ID^2}=a\sqrt{2}\\AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow AC^2+CD^2=AD^2\Rightarrow\Delta ACD\) vuông cân tạiC

\(\Rightarrow OC\perp CD\) \(\Rightarrow CD\perp\left(SOC\right)\)

Từ O kẻ \(OH\perp SC\Rightarrow OH\perp\left(SCD\right)\) \(\Rightarrow OH\perp SD\)

\(\left\{{}\begin{matrix}BI\perp SO\\BI\perp OC\end{matrix}\right.\) \(\Rightarrow BI\perp\left(SOC\right)\Rightarrow BI\perp OH\)

\(SC=\sqrt{SO^2+OC^2}=a\sqrt{2}\) \(\Rightarrow SH=\frac{SO^2}{SC}=\frac{3a\sqrt{2}}{4}\)

Qua H kẻ đường thẳng song song CD cắt SD tại K

\(\frac{SH}{SC}=\frac{HK}{CD}\Rightarrow HK=\frac{SH.CD}{SC}=\frac{3a}{4}\)

Trên toa OI lấy điểm P sao cho \(OP=\frac{3a}{4}\)

\(\Rightarrow OHKP\) là hình chữ nhật \(\Rightarrow OH//KP\Rightarrow KP\) là đoạn vuông góc chung của \(BI\) và SD

\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OC^2}\Rightarrow KP=OH=\frac{SO.OC}{\sqrt{SO^2+OC^2}}=\frac{a\sqrt{6}}{4}\)

NV
15 tháng 5 2019

Câu 2:

a/ Kẻ \(MH\perp AC\Rightarrow MH\perp\left(SAC\right)\)

\(\Rightarrow\widehat{MSH}\) là góc giữa SM và (SAC)

\(SM=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=a\sqrt{10}\) ; \(MH=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(sin\widehat{MSH}=\frac{MH}{SM}=\frac{\sqrt{30}}{20}\Rightarrow\widehat{MSH}\approx15^053'\)

b/ \(\left\{{}\begin{matrix}MC\perp AB\\MC\perp SA\end{matrix}\right.\) \(\Rightarrow MC\perp\left(SAB\right)\)

\(\Rightarrow\widehat{SMA}\) là góc giữa \(\left(SMC\right)\)\(\left(ABC\right)\)

\(tan\widehat{SMA}=\frac{SA}{AM}=3\Rightarrow\widehat{SMA}\approx71^033'\)

c/ Gọi N là trung điểm AC \(\Rightarrow NG=\frac{1}{3}NS\) (t/c trọng tâm)

\(\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{1}{3}d\left(N;\left(SAB\right)\right)\)

Từ N kẻ \(NK\perp AB\Rightarrow NK\perp\left(SAB\right)\)

\(\Rightarrow NK=d\left(N;\left(SAB\right)\right)\)

\(NK=\frac{1}{2}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{a\sqrt{3}}{6}\)