Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Gọi A 0 ; a là điểm trên trục tung thỏa mãn yêu cầu đề bài.
Gọi k là hệ số góc tiếp tuyến đi qua A.
Lúc này ta có hệ
x 4 − x 2 + 1 = k x − 0 + a 4 x 3 − 2 x = k ⇒ x 4 − x 2 + 1 = 4 x 3 − 2 x x + a
⇔ 3 x 4 − x 2 + a − 1 = 0 (*).
Để từ A kẻ được ba tiếp tuyến khác nhau trên đồ thị hàm số y = x 4 − x 2 + 1 thì phương trình (*) phải có đúng 3 nghiệm phân biệt.
Điều này xảy ra khi và chỉ khi phương trình (*) có 1 nghiệm bằng 0 và 1 nghiệm dương ⇔ a = 1 . Vậy có duy nhất một điểm trên trục tung thỏa mãn yêu cầu đề bài.
Chọn đáp án C
Tập xác định: D = R.
Gọi ∆ là đường thẳng đi qua M 0 ; m và có hệ số góc là k, phương trình đường thẳng ∆ : y = k x + m .
Đường thẳng ∆ là tiếp tuyến của (C) khi và chỉ khi hệ phương trình sau có nghiệm :
Hệ phương trình trên có nghiệm khi và chỉ khi phương trình (*) có nghiệm
Xét hàm số f x = x + 2 2 x 2 + x + 1 trên R.
Đạo hàm
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy: Phương trình (*) có nghiệm
⇔ - 1 2 < m ≤ - 1 hay m ∈ ( - 1 2 ; 1 ] .
Đáp án D
Ta có: y ' = 3 a x 2 + 2 b x + c
+) Đồ thị hàm số f'(x) đi qua gốc tọa độ => c=0
+) Đồ thị hàm số f'(x) có điểm cực trị:
1 ; − 1 ⇒ 6 a + 2 b = 0 3 a + 2 b = − 1 ⇔ a = 1 3 b = − 1
Vậy hàm số f ' x = x 2 − 2 x . Đồ thị hàm số f(x) tiếp xúc với trục hoành nên có cực trị nằm trên trục hoành. Các giá trị cực trị của hàm số f(x) là:
f 0 = d f 2 = 8 3 − 4 + d = − 4 3 + d
do điểm tiếp xúc có hoành độ dương
=> d = 4 3 => f(x) cắt trục tung tại điểm có tung độ 4 3
Đáp án D
A ∈ d ⇒ A a ; 9 a - 14
Pt tiếp tuyến qua A y = k(x-a)+9a-14
Qua A kẻ được 2 tiếp tuyến khi và chỉ khi hpt sau có 2 nghiệm:
k ( x - a ) + 9 a - 14 = x 3 - 3 x + 2 ( 1 ) k = 3 x 2 - 3 ( 2 )
Thay (2) vào (1) ta được:
3 x 2 - 3 x - a + 9 a - 14 = x 3 - 3 x + 12 ⇔ 3 x 3 - 3 a x 2 - 3 x + 12 a - 14 = x 3 - 3 x + 12 ⇔ x - 2 2 x 2 + - 3 a + 4 x - 6 a + 8 = 0 ⇔ [ x = 2 2 x 2 + - 3 a + 4 x - 6 a + 8 = 0 2 x 2 + - 3 a + 4 x - 6 a + 8 = 0 ∆ = 9 a 2 + 24 a - 48
Đáp án C
Phương pháp giải: Lập phương trình tiếp tuyến với hệ số góc k và đi qua điểm thuộc Oy, sử dụng điều kiện để hai đồ thị tiếp xúc tìm tham số m