K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

22 tháng 4 2016

Ta có \(y'=4x^3-4mx=4x\left(x^2-m\right);y'=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số có 3 điểm cực trị \(\Leftrightarrow\) phương trình \(y'=0\) có 3 nghiệm phân biệt là \(x=0;x=\pm\sqrt{m}\) suy ra đồ thị của hàm số có 3 điểm cực trị là \(A\left(0;m^2-m\right);B\left(-\sqrt{m};-m\right);\overrightarrow{AB}=\left(-\sqrt{m};-m^2\right);\overrightarrow{AC}=\left(\sqrt{m;}-m^2\right)\)

Do đó \(AB=AC=\sqrt{m^4+m}\) nên yêu cầu bài toán được thỏa mãn 

\(\Leftrightarrow\widehat{BAC}=120^0\Leftrightarrow\left(\overrightarrow{AB};\overrightarrow{AC}\right)=120^0\)\(\Leftrightarrow\frac{\overrightarrow{AB}\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|\left|\overrightarrow{AC}\right|}=\frac{1}{2}\)

                           \(\Leftrightarrow\frac{-\left(m\right)+m^4}{m+m^4}=-\frac{1}{2}\Leftrightarrow2m^4-2m=-m-m^4\)

                          \(\Leftrightarrow3m^4-m=0\Leftrightarrow m\left(3m^3-1\right)=0\Leftrightarrow m=0\) hoặc \(m=\frac{1}{\sqrt[3]{3}}\)

Kết hợp với điều kiện (*) ta có giá trị cần tìm là \(m=\frac{1}{\sqrt[3]{3}}\)

23 tháng 4 2016

Đáp số : \(m=-\frac{1}{\sqrt[3]{3}};m=-\sqrt[3]{\left(2+\sqrt{3}\right)^2}\)

NV
1 tháng 8 2021

\(y'=4x^3-4mx=0\Rightarrow\left\{{}\begin{matrix}x=0\\x^2=m\end{matrix}\right.\)

Hàm có 3 cực trị khi \(m>0\)

Khi đó gọi 3 điểm cực trị là A; B; C với \(\left\{{}\begin{matrix}A\left(0;m\right)\\B\left(\sqrt{m};-m^2+m\right)\\C\left(-\sqrt{m};-m^2+m\right)\end{matrix}\right.\)

Tam giác ABC luôn cân tại A

Gọi H là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AH=\left|y_B-y_A\right|=m^2\\BC=\left|x_B-x_A\right|=2\sqrt{m}\end{matrix}\right.\)

Do tam giác vuông cân

\(\Rightarrow AH=\dfrac{1}{2}BC\Rightarrow m^2=\sqrt{m}\Rightarrow m=1\)

22 tháng 11 2016

\(y'=4x\left(x-m\right)\left(x+m\right)\\ y'=0\Leftrightarrow\begin{cases}x=0\\x=\pm m\end{cases}\)

Với m=0 thì hàm số có 3 cực trị là 0, -m và m

đồ thị hàm số có 3 điểm cực trị \(A\left(0;1\right),M\left(-m;1-m^4\right),N\left(m;1-m^4\right)\)

Nhận thấy \(AM=AN\) nên \(\Delta AMN\) cân tại A với mọi m

Gọi trung điểm MN là \(I\left(0;1-m^4\right)\)

\(\Delta AMN\) vuông cân tại A khi và chỉ khi \(IA=IM=IN\) hay\(IA=IN\)

\(\Leftrightarrow IA=IN\Leftrightarrow\left|m^4\right|=\left|m\right|\Leftrightarrow m=\pm1\) (vì \(m\ne0\))

 

16 tháng 11 2016

kho vai

20 tháng 8 2017

Chọn B

23 tháng 4 2016

Đáp số : \(m=\frac{1}{\sqrt[3]{3}}\)

NV
2 tháng 8 2021

\(y'=4mx^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\mx^2=2\end{matrix}\right.\)

Hàm có 3 cực trị khi \(m>0\)

Gọi 3 cực trị là A, B, C với \(\left\{{}\begin{matrix}A\left(0;1\right)\\B\left(\sqrt{\dfrac{2}{m}};1-\dfrac{4}{m}\right)\\C\left(-\sqrt{\dfrac{2}{m}};1-\dfrac{4}{m}\right)\end{matrix}\right.\)

Gọi H là trung điểm BC \(\Rightarrow H\left(0;1-\dfrac{4}{m}\right)\)

\(AH=\left|y_A-y_H\right|=\dfrac{4}{m}\) ; \(BC=\left|x_B-x_C\right|=2\sqrt{\dfrac{2}{m}}\)

Tam giác ABC luôn cân tại A nên nó vuông cân khi \(AH=\dfrac{1}{2}BC\)

\(\Leftrightarrow\dfrac{4}{m}=\sqrt{\dfrac{2}{m}}\Rightarrow m=8\)