K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Đáp án D.

Tập xác định D = R \ {2}

Bảng biến thiên

Dựa vào bảng biến thiên, số điểm cực trị của hàm số đã cho là 2

6 tháng 3 2018

Chọn D

Ta có:  y ' = 3 x 2 - 4 x , y ' ' = 6 x - 4 ;

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y''(0) = -4 < 0; y''(4/3) = 4 > 0. Do đó hàm số có hai cực trị là x = 0 và x = 4/3

Các mệnh đề (1); (2) và (3) sai;mệnh đề (4) đúng.

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Chọn B

24 tháng 1 2022
1. Cho hàm số \(y=\dfrac{3x^2+13x+19}{x+3}\). Đường thẳng đi qua 2 điểm cực trị của đths có phương trình là:\(A.5x-2y+13=0\)\(B.y=3x+13\)\(C.y=6x+13\)\(D.2x+4y-1=0\)2. Cho hàm số \(y=\sqrt{x^2-2x}\). Khẳng định nào sau đây là đúng?A. Hàm số có 2 điểm cực trịB. Hàm số đạt cực tiểu tại x=0C. Hàm số đại cực đại tại x=2D. Hàm số có đúng 4 điểm cực trị3. Cho hàm số \(y=x^7-x^5\). Khẳng định nào sau đây đúng?A. Hàm số...
Đọc tiếp

1. Cho hàm số \(y=\dfrac{3x^2+13x+19}{x+3}\). Đường thẳng đi qua 2 điểm cực trị của đths có phương trình là:

\(A.5x-2y+13=0\)

\(B.y=3x+13\)

\(C.y=6x+13\)

\(D.2x+4y-1=0\)

2. Cho hàm số \(y=\sqrt{x^2-2x}\). Khẳng định nào sau đây là đúng?

A. Hàm số có 2 điểm cực trị

B. Hàm số đạt cực tiểu tại x=0

C. Hàm số đại cực đại tại x=2

D. Hàm số có đúng 4 điểm cực trị

3. Cho hàm số \(y=x^7-x^5\). Khẳng định nào sau đây đúng?

A. Hàm số có đúng 1 điểm cực trị

B. Hàm số có đúng 3 điểm cực trị

C. Hàm số có đúng 2 điểm cực trị 

D. Hàm số có đúng 4 điểm cực trị 

4. Cho hàm số \(y=f\left(x\right)\)có đạo hàm \(f'\left(x\right)=\left(x+1\right)\left(x-2\right)^2\left(x-3\right)^3\left(x+5\right)^4\)

. Hàm số \(y=f\left(x\right)\) có bao nhiêu điểm cực trị?

A. 2

B. 3

C. 4

D. 5

5. Cho hàm số \(y=\left(x^2-2x\right)^{\dfrac{1}{3}}\) . Khẳng định nào sau đây đúng?

A. Hàm số đạt cực tiểu tại x=1

B. Hàm số đạt cực đại tại x=1

C. Hàm số không có điểm cực trị

D. Hàm số có đúng 2 điểm cực trị

0
7 tháng 10 2018

 

 

Do đó hàm số f(|x|)  có 3 điểm cực trị  tại x= 2; x= -2 và  x= 0

Chọn B.

9 tháng 9 2019

Đáp án: B.

Hàm số y =  ( x + 1 ) 3 (5 - x) xác định trên R.

y' = - ( x + 1 ) 3  + 3 ( x + 1 ) 2 (5 - x) = 2 ( x + 1 ) 2 (7 - 2x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra hàm số chỉ có một cực trị (là cực đại)

 

Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị

6 tháng 10 2019

Đáp án B

Hàm số y =  x + 1 3 (5 - x) xác định trên R.

y' = - x + 1 3  + 3 x + 1 2 (5 - x) = 2 x + 1 2 (7 - 2x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra hàm số chỉ có một cực trị (là cực đại)

Cách khác: Nhận xét rằng y' chỉ đổi dấu khi x đi qua 7/2 nên hàm số chỉ có một cực trị

12 tháng 4 2022

Đơn giản là bạn vẽ cái hàm bậc 4 đó ra và cho -m và -m-10 cắt thôi. Vì -m-10<-m nên -m-10 sẽ nằm ở dưới, còn -m nằm trên. Nên -m sẽ cắt 2 điểm và -m-10 cắt 4 điểm cho ta 6 điểm. Ngoài ra k còn trường hợp nào khác mà -m và -m-10 cắt thỏa mãn

12 tháng 4 2022

Mình cảm ơn ạ, cho mình hỏi là nếu m đi qua cực trị thì có được tính là có nghiệm không ạ?

15 tháng 4 2018

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)