K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

10 tháng 11 2018

7 tháng 1 2017

Đáp án B

Giả thiết  

Đặt

 

thì

 

 

Khi đó, phương trình

 (vô nghiệm)

Vậy đồ thị hàm số y = g(x) không cắt trục hoành.

20 tháng 9 2019

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn

24 tháng 7 2019

Chọn A.

Tập xác định của hàm số y=f(x) là D=R Từ đồ thị đã cho ta có: f ' ' x = 0 ⇔ x = - 1 x = 2 .  

Bảng biến thiên.


Dựa vào bảng biến thiên của hàm số y=f(x) ta nhận thấy hàm số y=f(x) đồng biến trên khoảng  - 1 ; + ∞ .

3 tháng 6 2017

Đáp án C

10 tháng 8 2017

Chọn đáp án B

Ta có f ' x = 4 a x 3 + 3 b x 2 + 2 c x + d

và f ' ' x = 2 6 a x 2 + 3 b x + c  

Suy ra g x = f ' x 2 - f ' ' x . f x  

Đồ thị hàm số y = f x = a x 4 + b x 3 + c x 2 + d x + e  cắt trục hoành tại 4 điểm phân biệt có hoành độ x 1 , x 2 , x 3 , x 4  phương trình f x = 0 có 4 nghiệm  x 1 , x 2 , x 3 , x 4

Suy ra f x = a x - x 1 x - x 2 x - x 3 x - x 4

*Khi x = x i i = 1 , 2 , 3 , 4 thì

nên  g x > 0

*Khi x ≠ x i ∀ i = 1 , 2 , 3 . 4 thì

và f 2 x > 0  

Từ (*) suy ra

24 tháng 5 2017

Đáp án C.

Dễ thấy trên đoạn − 3 ; 0  thì f x ≥ 0 , trên đoạn 0 ; 4  thì f x ≤ 0 .

 

S = ∫ − 3 4 f x d x = ∫ − 3 0 f x d x + ∫ 0 4 f x d x = ∫ − 3 0 f x d x − ∫ 0 4 f x d x

= ∫ − 3 0 f x d x + ∫ 4 0 f x d x

 

.

6 tháng 12 2017

23 tháng 10 2018

Đáp án A

Ta có  ∫ 2 x − 4 d x = x 2 − 4 x + C

Thay  x = 0 ⇒ F x = f x = − 4 ⇔ C = − 4