Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Chọn A.
Theo đồ thị ta có: f'(x) > 0
Ta có:
Cho y' = 0
Để hàm số có 3 điểm cực trị thì phương trình y' = 0 phải có 3 nghiệm bội lẻ
Ta thấy x = 0 là một nghiệm bội lẻ
Dựa vào đồ thị của y = f'(x) ta thấy x = 1 là nghiệm bội lẻ (không đổi dấu), do đó ta không xét trường hợp
Suy ra để hàm số có 3 điểm cực trị thì
TH1: x 2 = 2m có 2 nghiệm phân biệt khác 0 và x 2 = 2m + 3 vô nghiệm hoặc có nghiệm kép bằng 0
TH2. x 2 = 2m + 3 có 2 nghiệm phân biệt khác 0 và x 2 = 2m vô nghiệm hoặc có nghiệm kép bằng 0
Vậy hàm số của 3 điểm cực trị khi
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Chọn C
Đồ thị hàm số y= f’( x+ 2018) là phép tịnh tiến của đồ thị hàm số y= f’(x) song song với trục hoành về bên trái 2018 đơn vị.
=> đồ thị hàm số y= f’( x+ 1018) vẫn cắt trục hoành tại 3 điểm.
Đáp án C
Khi đó hàm số y=f(x) đạt cực tiểu tại x = x 1 hay hàm số y=f(x) có 1 điểm cực trị.
Chọn C.
Từ đồ thị suy ra hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = ± 1 nên loại A, B, D