K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Chọn D 

Xét hàm số .

.

Ta lại có thì . Do đó thì .

thì . Do đó thì .

Từ đó ta có bảng biến thiên của như sau

Dựa vào bảng biến thiên, ta có

I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.

III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.

IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

20 tháng 12 2017

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

25 tháng 11 2018

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4  + b x 2  + c có hai cực đại, một cực tiểu.

Ở đây y' = -4 x 3  + 8x; y' = 0 ⇔ -4x( x 2  - 2) = 0

 

 Giải sách bài tập Toán 12 | Giải sbt Toán 12

2 tháng 11 2017

Đáp án D

21 tháng 10 2017

7 tháng 2 2019

19 tháng 1 2017

28 tháng 11 2019

Chọn B 

 

+ Dựa vào  đồ thị hàm số  ta thấy :

  - Hàm  số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và  ( 3; 5) .

  - Hàm số y= f( x) nghịch  biến trên khoảng ( 1 ; 3)   và ( 5 ; + ∞)  

 

 

 

 

 

21 tháng 7 2019

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm