Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)
b) Hàm số nghịch biến trên R
\(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)
a) Để hàm số là hàm bậc nhất thì 3 - m 0
m 3
b) Để hàm số là nghịch biến thì 3 - m < 0
m > 3
c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:
(3 - m).2 + 2 = -3
6 - 2m + 2 = -3
8 - 2m = -3
2m = 11
m = 11/2 (nhận)
Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)
(Sửa theo yêu cầu rồi nhé em!)
d) Thay tọa độ B(-1; -5) vào hàm số, ta được:
(2 - m).(-1) + 2 = -5
-2 + m + 2 = -5
m = -5 (nhận)
Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)
a) Tìm giá trị của m để hàm số trên là đồng biến, nghịch biến
Hàm số trên là đồng biến khi và chỉ khi :
m + 1 > 0 ⇔ m > -1
Hàm số trên là nghịch biến khi và chỉ khi :
m + 1 < 0 ⇔ m < -1
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
ĐK để hàm số trên là hàm bậc nhất => m-5 khác 0 => m khác 5
b) m-5>0 => hàm số đồng biến
m-5<0 => hàm số ngịch biến
Hàm số y = ( 5 − 5 − m ) . x + m + 2 là hàm số nghịch biến khi 5 − 5 − m < 0
ĐK: 5 − m ≥ 0 ⇔ m ≤ 5
Khi đó 5 − 5 − m < 0 ⇔ 5 − m > 5 ⇒ 5 – m > 25 ⇔ m < − 20
Kết hợp với điều kiện ta được m < −20 nên giá trị nguyên lớn nhất của m thỏa mãn là m = − 21
Đáp án cần chọn là: D