K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx A. P=7 B.P=-4 C.P=4 D.P=10 2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là A -tanx B -tanx+1 C tanx+1 D tanx-1 3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c? 4 Tích phân...
Đọc tiếp

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx

A. P=7 B.P=-4 C.P=4 D.P=10

2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là

A -tanx B -tanx+1 C tanx+1 D tanx-1

3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c?

4 Tích phân I=\(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\) \(\frac{dx}{sin^2x}\) bằng

A 1 B 3 C 4 D 2

5 Cho I=\(\int_2^a\) \(\frac{2x-1}{1-x}\)dx, xác định a đề I=-4-ln3

6 diện tích hình phẳng giới hạn bởi các đường cong y=x^3 và y=x^5 bằng

7 Tính thể tích V của khối tròn xoay tạo thành khi ta cho miền phẳng D giới hạn bởi các đường y=sin, trục hoành,x=0, x=\(\frac{\pi}{2}\) quay quanh trục Ox

8 Mô đun của số phức z=\(\frac{z-17i}{5-i}\) có phần thực là

9 cho số phức z thỏa (1-3i)z=8+6i. Mô đun của z bằng

10 phần thực của phức z thỏa (1+i)^2.(2-i)z=8+i+(1+2i)z la

11 cho zố phức z=-1-2i. điểm biểu diễn của số phức z là

A diểm D B diểm B c điểm C D điểm A

3
NV
8 tháng 5 2020

7.

Thể tích:

\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)

8.

\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)

\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)

Rốt cuộc câu này hỏi modun hay phần thực vậy ta?

Phần thực bằng 1

Môđun \(\left|z\right|=\sqrt{17}\)

9.

\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)

\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)

10.

\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)

\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)

\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)

\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)

Phần thực \(a=2\)

11.

Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)

NV
8 tháng 5 2020

4.

\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)

5.

\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)

\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)

6.

Phương trình hoành độ giao điểm:

\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)

NV
11 tháng 4 2019

Câu 1:

\(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\int\limits^3_0\sqrt{x+1}dx\)

\(=\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx+\frac{14}{3}=\frac{302}{15}\Rightarrow\int\limits^1_0f'\left(x\right)\sqrt{x+1}dx=\frac{232}{15}\)

Ta có:

\(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\frac{dx}{\sqrt{x+1}}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2\sqrt{x+1}\end{matrix}\right.\)

\(\Rightarrow I=2f\left(x\right)\sqrt{x+1}|^3_0-2\int\limits^3_0f'\left(x\right)\sqrt{x+1}dx\)

\(=4f\left(3\right)-2f\left(0\right)-2.\frac{232}{15}\)

\(=2\left(2f\left(3\right)-f\left(0\right)\right)-\frac{464}{15}=36-\frac{464}{15}=\frac{76}{15}\)

NV
11 tháng 4 2019

Câu 2:

\(I_1=\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\)

Đặt \(\left\{{}\begin{matrix}u=\frac{x}{x+1}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{\left(x+1\right)^2}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I_1=\frac{xf\left(x\right)}{x+1}|^3_1-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}=\frac{3.3}{3+1}-\frac{1.3}{1+1}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}-\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=0\)

\(\Rightarrow\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx=\frac{3}{4}\)

Ta có:

\(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx=\int\limits^3_1\frac{f\left(x\right)}{\left(x+1\right)^2}dx+\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx=\frac{3}{4}+I_2\)

Xét \(I_2=\int\limits^3_1\frac{lnx}{\left(x+1\right)^2}dx\Rightarrow\) đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\frac{1}{\left(x+1\right)^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=\frac{-1}{x+1}\end{matrix}\right.\)

\(\Rightarrow I_2=\frac{-lnx}{x+1}|^3_1+\int\limits^3_1\frac{dx}{x\left(x+1\right)}=-\frac{1}{4}ln3+\int\limits^1_0\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

\(=-\frac{1}{4}ln3+ln\left(\frac{x}{x+1}\right)|^3_1=-\frac{1}{4}ln3+ln\frac{3}{4}-ln\frac{1}{2}=\frac{3}{4}ln3-ln2\)

\(\Rightarrow I=\frac{3}{4}+\frac{3}{4}ln3-ln2\)

4.Cho hàm số f(x) là hàm số chẵn và liên tục trên R thỏa mãn \(\int_{-1}^1f\left(x\right)dx\)=2. Khi đó giá trị tích phân \(\int_0^1f\left(x\right)dx\) là : A.1 B.2 C.\(\frac{1}{4}\) D.\(\frac{1}{2}\) 5.Cho f(x) liên tục trên [0;10] thỏa mãn \(\int_0^{10}f\left(x\right)dx=7\), \(\int_2^6f\left(x\right)dx=3\). Khi đó giá trị của P = \(\int_0^2f\left(x\right)dx+\int_6^{10}f\left(x\right)dx\) có giá trị là: A.1 B.2 C.4 D.3 6.Cho hình...
Đọc tiếp

4.Cho hàm số f(x) là hàm số chẵn và liên tục trên R thỏa mãn \(\int_{-1}^1f\left(x\right)dx\)=2. Khi đó giá trị tích phân \(\int_0^1f\left(x\right)dx\) là : A.1 B.2 C.\(\frac{1}{4}\) D.\(\frac{1}{2}\)

5.Cho f(x) liên tục trên [0;10] thỏa mãn \(\int_0^{10}f\left(x\right)dx=7\), \(\int_2^6f\left(x\right)dx=3\). Khi đó giá trị của P = \(\int_0^2f\left(x\right)dx+\int_6^{10}f\left(x\right)dx\) có giá trị là: A.1 B.2 C.4 D.3

6.Cho hình phẳng S giới hạn bởi Ox và y =\(\sqrt{1-x^2}\). Thể tích của khối tròn xoay khi quay S quanh Ox là: A.\(\frac{3}{2}\pi\) B.\(\frac{3}{4}\pi\) C.\(\frac{4}{3}\pi\) D.\(\frac{2}{3}\pi\)

7.Tính tích phân I = \(\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{\sin^2x}{\sin3x}dx\) ta được kết quả I = \(\frac{1}{a}ln\left|b+\sqrt{3c}\right|\) với a, b, c \(\in Z\). Giá trị của a + 2b + 3c là: A.5 B.2 C.8 D.3

8.Cho hàm số y = f(x) có đạo hàm f'(x) = \(\frac{1}{2x-1}\), f(1)=1 thì f(5) có giá trị bằng: A.ln2 B.ln2 + 1 C.ln3 D.ln3 + 1

2
NV
28 tháng 3 2019

Câu 6:

Hoành độ giao điểm: \(\sqrt{1-x^2}=0\Leftrightarrow x=\pm1\)

\(\Rightarrow V=\pi\int\limits^1_{-1}\left(1-x^2\right)dx=\frac{4}{3}\pi\)

// Hoặc là tư duy theo 1 cách khác, biến đổi pt ban đầu ta có:

\(y=\sqrt{1-x^2}\Leftrightarrow y^2=1-x^2\Leftrightarrow x^2+y^2=1\)

Đây là pt đường tròn tâm O bán kính \(R=1\Rightarrow\) khi quay quanh Ox ta sẽ được một mặt cầu bán kính \(R=1\Rightarrow V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi\)

Câu 7: Về bản chất, đây là 1 con tích phân sai, không thể tính được, do trên miền \(\left[\frac{\pi}{6};\frac{\pi}{2}\right]\) hàm dưới dấu tích phân không xác định tại \(x=\frac{\pi}{3}\)\(x=\frac{2\pi}{3}\), nhưng nhắm mắt làm ngơ với lỗi ra đề sai đó và ta cứ mặc kệ nó, không quan tâm cứ máy móc áp dụng thì tính như sau:

Biến đổi biểu thức dưới dấu tích phân 1 chút trước:

\(\frac{sin^2x}{sin3x}=\frac{sin^2x}{3sinx-4sin^3x}=\frac{sinx}{3-4sin^2x}=\frac{sinx}{3-4\left(1-cos^2x\right)}=\frac{sinx}{4cos^2x-1}\)

\(\Rightarrow I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{6}}\frac{sinx.dx}{4cos^2x-1}\Rightarrow\) đặt \(cosx=t\Rightarrow sinx.dx=-dt\)

\(\Rightarrow I=\int\limits^0_{\frac{\sqrt{3}}{2}}\frac{-dt}{4t^2-1}=\int\limits^{\frac{\sqrt{3}}{2}}_0\frac{dt}{\left(2t-1\right)\left(2t+1\right)}=\frac{1}{2}\int\limits^{\frac{\sqrt{3}}{2}}_0\left(\frac{1}{2t-1}-\frac{1}{2t+1}\right)dt\)

\(I=\frac{1}{4}ln\left|\frac{2t-1}{2t+1}\right|^{\frac{\sqrt{3}}{2}}_0=\frac{1}{4}ln\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)=\frac{1}{4}ln\left(2-\sqrt{3}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-1\end{matrix}\right.\) \(\Rightarrow a+2b+3c=5\)

Câu 8:

\(f\left(x\right)=\int\frac{1}{2x-1}dx=\frac{1}{2}\int\frac{d\left(2x-1\right)}{2x-1}=\frac{1}{2}ln\left|2x-1\right|+C\)

\(f\left(1\right)=1\Leftrightarrow\frac{1}{2}ln1+C=1\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=\frac{1}{2}ln\left|2x-1\right|+1\Rightarrow f\left(5\right)=\frac{1}{2}ln9+1=ln3+1\)

NV
28 tháng 3 2019

Câu 4:

\(I=\int\limits^1_{-1}f\left(x\right)dx=\int\limits^0_{-1}f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx\)

Do \(f\left(x\right)\) là hàm chẵn \(\Rightarrow f\left(x\right)=f\left(-x\right)\) \(\forall x\)

Đặt \(x=-t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=-1\Rightarrow t=1\\x=0\Rightarrow t=0\end{matrix}\right.\)

\(\Rightarrow\int\limits^0_{-1}f\left(x\right)dx=\int\limits^0_1f\left(t\right).\left(-dt\right)=\int\limits^1_0f\left(t\right)dt=\int\limits^1_0f\left(x\right)dx\)

\(\Rightarrow I=\int\limits^1_0f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx=2\int\limits^1_0f\left(x\right)dx=2\)

\(\Rightarrow\int\limits^1_0f\left(x\right)dx=1\)

Câu 5: Theo tính chất tích phân ta có:

\(\int\limits^{10}_0f\left(x\right)dx=\int\limits^2_0f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx+\int\limits^{10}_6f\left(x\right)dx\)

\(\Rightarrow\int\limits^2_0f\left(x\right)dx+\int\limits^{10}_6f\left(x\right)dx=\int\limits^{10}_0f\left(x\right)dx-\int\limits^6_2f\left(x\right)dx=7-3=4\)

NV
2 tháng 8 2020

Đặt \(x=\frac{\sqrt{2}}{2}sint\Rightarrow dx=\frac{\sqrt{2}}{2}cost.dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=\frac{1}{2}\Rightarrow t=\frac{\pi}{4}\end{matrix}\right.\)

\(\int\limits^{\frac{1}{2}}_0f\left(\sqrt{1-2x^2}\right)dx=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cost\right).costdt=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right)cosxdx=\frac{7}{6}\)

\(\Rightarrow J=\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right).cosx.dx=\frac{7\sqrt{2}}{6}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(cosx\right)\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.f'\left(cosx\right)dx\\v=sinx\end{matrix}\right.\)

\(\Rightarrow J=sinx.f\left(cosx\right)|^{\frac{\pi}{4}}_0+\int\limits^{\frac{\pi}{4}}_0f'\left(cosx\right)sin^2x.dx=\frac{\sqrt{2}}{2}+I\)

\(\Rightarrow I=\frac{7\sqrt{2}}{6}-\frac{\sqrt{2}}{2}=\frac{2\sqrt{2}}{3}\)

2 tháng 4 2017

a) f(x) = 2x3 – 3x2 – 12x + 1 ⇒ f’(x) = 6x2 – 6x – 12

f’(x) = 0 ⇔ x ∈ {-1, 2}

So sánh các giá trị:

f(x) = -3; f(-1) = 8;

f(2) = -19, f(52)=−332f(52)=−332

Suy ra:

maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19maxx∈[−2,52]⁡f(x)=f(−1)=8minx∈[−2,52]⁡f(x)=f(2)=−19

b) f(x) = x2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e] nên f(x) đồng biến.

Do đó:

maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0maxx∈[1,e]⁡f(x)=f(e)=e2minx∈[1,e]⁡f(x)=f(1)=0

c) f(x) = f(x) = xe-x ⇒ f’(x)= e-x – xe-x = (1 – x)e-x nên:

f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1) và f’(x) < 0, ∀x ∈ (1, +∞)

nên:

maxx∈[0,+∞)f(x)=f(1)=1emaxx∈[0,+∞)⁡f(x)=f(1)=1e

Ngoài ra f(x) = xe-x > 0, ∀ x ∈ (0, +∞) và f(0) = 0 suy ra

maxx∈[0,+∞)f(x)=f(0)=0maxx∈[0,+∞)⁡f(x)=f(0)=0

d) f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x

f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π

x∈{−π+k2π;π3+k2π3}x∈{−π+k2π;π3+k2π3}

Trong khoảng [0,3π2][0,3π2] , phương trình f’(x) = 0 chỉ có hai nghiệm là x1=π3;x2=πx1=π3;x2=π

So sánh bốn giá trị : f(0) = 0; f(π3)=3√32;f(π)=0;f(3π2)=−2f(π3)=332;f(π)=0;f(3π2)=−2

Suy ra:

maxx∈[0,3π2]f(x)=f(π3)=3√32minx∈[0,3π2]f(x)=f(3π2)=−2



NV
2 tháng 4 2019

\(3f\left(x\right)+x.f'\left(x\right)=x^{2018}\Leftrightarrow3x^2.f\left(x\right)+x^3.f'\left(x\right)=x^{2020}\)

\(\Leftrightarrow\left(x^3.f\left(x\right)\right)'=x^{2020}\)

\(\Leftrightarrow x^3f\left(x\right)=\frac{1}{2021}x^{2021}+C\Rightarrow f\left(x\right)=\frac{x^{2018}}{2021}+\frac{C}{x^3}\)

Do \(f\left(x\right)\) có đạo hàm liên tục trên \(\left[0;1\right]\Rightarrow f\left(x\right)\) xác định tại \(x=0\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=\frac{x^{2018}}{2021}\)

Lấy tích phân 2 vế:

\(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{x^{2018}}{2021}dx=\frac{1}{2019.2021}\)

NV
3 tháng 4 2019

Rất khó hiểu, hàm số này không thể liên tục trên R

Định nghĩa 1 hàm số liên tục tại \(x_0\) khi:

\(\lim\limits_{x\rightarrow x_0^+}f\left(x\right)=\lim\limits_{x\rightarrow x_0^-}f\left(x\right)=f\left(x_0\right)\)

Có nghĩa là hàm \(f\left(x\right)\) muốn liên tục thì trước hết phải là 1 đơn ánh: mỗi giá trị của \(x_0\) chỉ cho duy nhất một giá trị \(f\left(x_0\right)\)

Nhưng trong bài toán này, hàm \(f\) rõ ràng ko phải đơn ánh, một giá trị \(x_0\) sẽ cho tới 2 giá trị \(f\left(x_0\right)\) khác nhau

Ví dụ: cho \(x=0\) ta được \(f\left(1\right)=2\), nhưng \(x=-3\) thì \(f\left(1\right)=-1\ne3\)

9 tháng 4 2019

Nguyên văn đề đây ạ:Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG