K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

Đề thiếu rồi bạn

28 tháng 12 2021

thiếu j vậy bạn

 

15 tháng 1 2018

a) Thay f(3) vào hàm số ta có :

y=f(3)=4.32-5=31

Thay f(-1/2) vào hàm số ta có :

y=f(-1/2)=4.(-1/2)2-5=-4

b) Thay x=-1 vào hàm số ta có : 4.(-1)2-5=-1

=> f(-1) với x=-1

15 tháng 1 2018

cam on nhe

29 tháng 11 2023

Bài 4:

\(f\left(5\right)-f\left(4\right)=2019\)

=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)

=>\(61a+9b+21c=2019\)

\(f\left(7\right)-f\left(2\right)\)

\(=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c\)

\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số

16 tháng 2 2019

a) \(y=f\left(x\right)=3\left(x^2+\frac{2}{3}\right)\)

\(f\left(-x\right)=3\left[\left(-x\right)^2+\frac{2}{3}\right]=f\left(x\right)^{\left(đpcm\right)}\)

b) Đề sai,thay x = 3 vào là thấy.

16 tháng 2 2019

b (đè sai

15 tháng 4 2018

a/ Ta có \(f\left(-x\right)=\left|-x-2014\right|-\left|-x+2014\right|\)

Mà \(\left|-x-2014\right|\le\left|-x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)

\(\left|-x+2014\right|\le\left|-x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)

=>\(\left|-x-2014\right|-\left|-x+2014\right|\le\left(\left|-x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)

=> \(\left|-x-2014\right|-\left|-x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)

=> \(\left|-x-2014\right|-\left|-x+2014\right|\le0\)(1)

và \(f\left(x\right)=\left|x-2014\right|-\left|x+2014\right|\)

Mà \(\left|x-2014\right|\le\left|x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)

\(\left|x+2014\right|\le\left|x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)

=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(\left|x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)

=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)

=> \(\left|x-2014\right|-\left|x+2014\right|\le0\)(2)

Từ (1) và (2) => \(\left|-x-2014\right|-\left|-x+2014\right|=\left|x-2014\right|-\left|x+2014\right|\)

=> \(f\left(x\right)=f\left(-x\right)\)(đpcm)

b/ + Ta có \(\left|x-2014\right|\ge0\)với mọi giá trị của x

\(\left|x+2014\right|\ge0\)với mọi giá trị của x

=> \(\left|x-2014\right|-\left|x+2014\right|\ge0\)với mọi giá trị của x

=> GTNN của f (x) = 0.

và \(\left|x-2014\right|-\left|x+2014\right|\le0\)(cm câu a)

=> GTLN của f (x) = 0.

27 tháng 12 2021

a: Thay x=-2 và y=3 vào y=ax, ta được:

-2a=3

hay a=-3/2

20 tháng 8 2019

Mí bạn giúp mik vs chiều nay mình học rồi :(((

7 tháng 2 2020

Bài 1:

\(a)f\left(x\right)=10x\)

\(\Leftrightarrow f\left(0\right)=10.0=0\)

\(\Leftrightarrow f\left(-1\right)=10\left(-1\right)=-10\)

\(\Leftrightarrow f\left(\frac{1}{2}\right)=\frac{10}{2}=5\)

\(b)\)Vì \(f\left(x\right)=10x\)

Nên: \(f\left(a+b\right)=10\left(a+b\right)\)

Và: \(f\left(a\right)+f\left(b\right)=10a+10b=10\left(a+b\right)\)

Do đó:

\(f\left(a+b\right)=f\left(a\right)+f\left(b\right)\left(đpcm\right)\)

\(c)\)Vì \(\hept{\begin{cases}f\left(x\right)=10x\\f\left(x\right)=x^2\end{cases}\Leftrightarrow x^2=10x}\)

\(\Leftrightarrow x^2-10x=0\)

\(\Leftrightarrow x\left(x-10\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=10\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x=0\\x=10\end{cases}}\)thì \(f\left(x\right)=x^2\)