Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tập hợp A và B có nghĩa thì:
\(m-4\le1\Leftrightarrow m\le5\) (1)
\(m>-3\) (2)
Từ (1) và (2) \(\Rightarrow-3< m\le5\)
Mà: \(A\cup B=B\)
\(\Rightarrow A\subset B\)
\(\Rightarrow\left\{{}\begin{matrix}m-4>-3\\m\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3+4\\m\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge1\end{matrix}\right.\Leftrightarrow m>1\)
Mà: \(-3< m\le5\)
\(\Rightarrow1< m\le5\)
\(\Rightarrow m=\left\{2;3;4;5\right\}\)
Tổng là: có 4 giá trị m nguyên thỏa mãn
a: \(A\cap B=\left(-3;1\right)\)
\(A\cup B\)=[-5;4]
A\B=[1;4]
\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)
b: C={1;-1;5;-5}
\(B\cap C=\left\{-5;-1\right\}\)
Các tập con là ∅; {-5}; {-1}; {-5;-1}
Cho hai tập hợp A = [ 1;3 ] và B = [ m; m+1], Tìm tất cả các giá trị của tham số m để \(B\subset A\)
Để B là con của A
\(\left\{{}\begin{matrix}m\ge1\\m+1\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge1\\m\le2\end{matrix}\right.\)
Vậy 1 ≤ m ≤ 2
Để A và B có nghĩa \(\Rightarrow\left\{{}\begin{matrix}m-4\le1\\m>-3\end{matrix}\right.\) \(\Rightarrow-3< m\le5\)
\(A\cup B=B\Leftrightarrow A\subset B\)
\(\Rightarrow\left\{{}\begin{matrix}m-4>-3\\m\ge1\end{matrix}\right.\) \(\Rightarrow m>1\)
\(\Rightarrow1< m\le5\Rightarrow m=\left\{2;3;4;5\right\}\)
Tổng bằng ....