K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

4 tháng 7 2016

tổng các chữ số của a=52 ( vì a gồm 52 số 1) 
tg tự tổng các chữ số của b=104 
1 số đc gọi là chia hết cho 3 khi tổng các chữ số của nó phải chia hết cho 3 
Vì vậy a=52 mà 5+2=7 ; 7 không chia hết cho 3 =>a k chia hết cho 3 
b=104 mà 1+0+4=5; 5 cũg k chia hết cho 3=>b k chia hết cho 3 
tích của a.b là tích của 2 số k chia hết cho 3 nên k chia hết cho 3 

CHÚC BẠN LÀM BÀI TỐT NHA !

nhớ nha bạn....

Bài 1: 

Đặt G(x)=0

\(\Leftrightarrow3\cdot\left(5x-1\right)\left(3x-1\right)=0\)

=>(5x-1)(3x-1)=0

=>5x-1=0 hoặc 3x-1=0

=>x=1/5 hoặc x=1/3

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

11 tháng 6 2018

gọi thương của hai phép chia lần lượt là P và Q ,ta có 

a=5P+1

b=5Q+4

=> (ab)+1<=>(5P+1)(5Q+4)+1

                \(\Leftrightarrow25PQ+20P+5Q+5\)

                  \(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)

=>ab+1 chia hết cho 5

12 tháng 6 2018

Ta có a chia 5 dư 1 ,

         b chia 5 dư 4,

=> ab chia 5 dư 4

=> ab+1 chia hết cho 5