Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = 4x + 1 và b = 4y + điều kiện b ≥ a .
Biểu diễn b 2 – a 2 = 8 ( 2 y 2 + 3 y – 2 x 2 – x + 1 ) .
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6