Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)
\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)
dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)
vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)
Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)
Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)
Vậy Min P = 6 <=> x = y = 1/2
Bài này số thực dương thì chỉ tìm được GTLN, còn GTNN chỉ tồn tại khi x;y là số thực bất kì
\(x^2+y^2-xy=4\Leftrightarrow x^2+y^2-\frac{x^2+y^2}{2}\le4\)
\(\Leftrightarrow x^2+y^2\le8\)
\(\Rightarrow P_{max}=8\) khi \(x=y=2\)
Nếu bỏ điều kiện x;y dương thì sử dụng miền giá trị tìm ca min lẫn max:
Từ điều kiện ban đầu suy ra x;y đều khác 0
\(\frac{P}{4}=\frac{x^2+y^2}{x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2+1}{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)
Đặt \(\frac{x}{y}=a\Rightarrow\frac{P}{4}=\frac{a^2+1}{a^2-a+1}\Leftrightarrow\left(P-4\right)a^2-Pa+P-4=0\)
\(\Delta=P^2-4\left(P-4\right)^2\ge0\Leftrightarrow-3P^2+32P-64\ge0\)
\(\Leftrightarrow\frac{8}{3}\le P\le8\)
\(P_{max}=8\) khi \(x=y=\pm2\)
\(P_{min}=\frac{8}{3}\) khi \(x=-y=\frac{2\sqrt{3}}{3}\) và hoán vị