Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt z = a + bi(a, b ∈ R). Ta có
⇔ 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)
⇔ 3a - b - 2 + (a - 7b + 6)i = 0
Suy ra z = 1 + i và w = 1 + ( 1 + i ) + ( 1 + i ) 2 = 2 + 3 i .
Vậy: | w | = ( 4 + 9 ) = 13
Chọn B
Đặt z = a + bi(a, b ∈ R).
Suy ra z = 1 + i. Vậy z . z = | z | 2 = 1 2 + 1 2 = 2
Chọn B
Từ (1) và (2) suy ra a = b = 1.
Suy ra z=1+i
Vậy z 2 = ( 1 + i ) 2 = 1 + 2 i - 1 = 2 i
Chọn D
Đặt a + bi(a, b ∈R). Ta có:
( 1 + 2 i ) 2 z = ( 1 + 2 i - 4 ) ( a + b i ) = - 3 a - 3 b i + 4 a i - 4 b = - 3 a - 4 b + ( 4 a - 3 b ) i
Do đó: ( 1 + 2 i ) 2 . z + a = 4 i - 20 <=> -3a - 4b + (4a - 3b)i + a - bi = 4i - 20
<=> -2a - 4b + (4a - 4b)i = 4i - 20
Chọn B