K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

giúp mình với nhé mình k điểm cho

16 tháng 11 2018

mình chắm đỉm cho

3 tháng 8 2019

Với a,b \(\in\)Z, b >0.

Ta có : a < b

 \(\Rightarrow\)a + ab < b + ab

 \(\Rightarrow\)a(b+1) < b(a+1)

\(\Rightarrow\)\(\frac{a}{b}< \frac{a+1}{b+1}\)

trả lời :

a/b < a+1/b+1

vì:

a cũ sẽ nhỏ hơn a mới 1 đơn vị

b cũ cũng sẽ nhỏ hơn b mới 1 đơn vị

mà a<b

nên có thể a + 1 sẽ = b cũ

ví dụ:

a=5

b=6

thì ta có:

5/6 và 5+1/6+1

=>5/6 và 6/7

nếu quy đồng 2 mẫu số thì ta có:

35/42 và 36/42

mà35/42 < 36/42

=> a/b < a+1/b+1  

31 tháng 8 2016

giúp mình với sau mình hậu tạ hiiiiiiiiiiiiiii

11 tháng 11 2016

coi bộ khó rùi nha!

a hỏi ông goolge là ra

2 tháng 8 2019

1

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)

=> M ko là số tự nhiên

2

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)

3

\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)

\(\Rightarrow35x+35y=2010x-2010y\)

\(\Rightarrow35-2010x=2010y-35y\)

\(\Rightarrow-175x=-245y\)

\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\)

\(\Rightarrow x=7k;y=5k\)

\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)

\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)

Vậy \(x=7;y=5\)

2 tháng 8 2019

bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*