Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong toán học, tập xác định (còn gọi là miền xác định) của một hàm số là tập hợp các giá trị của biến số làm cho hàm số đó có nghĩa.
có muốn mìh tìm lun cho k?
Khi x= 2 thì y= - 0,5.2 = -1. Vậy điểm A(2; -1) thuộc đồ thị của hàm số y = f(x) = - 0,5x. Đồ thị của hàm số này là đường thẳng OA trong hình vẽ dưới đây:
Trên đồ thị ta thấy:
a) f(2)= -1; f(-2)= 1; f(4)= -2; f(0)= 0.
b) y= -1 \(\Rightarrow\) x= 2;
y= 0 \(\Rightarrow\) x= 0;
y= 2,5 \(\Rightarrow\) x= -5.
c) y > 0 ứng với phần đồ thị phía trên trục hoành và ở bên trái trục tung nên x < 0.
y < 0 ứng với phần đồ thị nằm phía dưới trục hoành và ở bên trái trục tung nên a > 0.
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
\(y=g\left(x\right)=x+\sqrt{\frac{4}{25}}\)
\(g\left(0\right)=0+\sqrt{\frac{4}{25}}=\frac{2}{5}\)
Để \(f\left(x\right)=g\left(0\right)\) thì
\(f\left(x\right)=x+1=\frac{2}{5}\)
Vậy để f(x) = g(0) thì y = f(x) = \(\frac{2}{5}\)