K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Do hàm số y = f(x) nghịch biến trên khoảng (a;b) nên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy hàm số y = - f(x) đồng biến trên khoảng (a;b).

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

16 tháng 12 2023

thầy ơi thầy có thể giải giùm e đc ko ạ

Câu 1: hàm số \(y=\sqrt{2}\).Chọn kết luận đúng A. Đths không cắt trục Ox B. Đths đi qua điểm \((1;\sqrt{2})\) C. Hs đồng biến trên toàn trục số D. Hs nghịch biến trên\((-\infty;0) \) Câu 2: Cho pt \(y=|x|+2x\). Chọn kết luận đúng A.Đths đi qua điểm\((1;2)\) B.Đths không cắt trục Ox C.Hs nghịch biến trên\((-\infty;0) \) D.Hs đồng biến trên toàn trục số Câu 3: Cho 1 tam giác vuông với độ dài các cạnh được tính theo...
Đọc tiếp

Câu 1: hàm số \(y=\sqrt{2}\).Chọn kết luận đúng

A. Đths không cắt trục Ox

B. Đths đi qua điểm \((1;\sqrt{2})\)

C. Hs đồng biến trên toàn trục số

D. Hs nghịch biến trên\((-\infty;0) \)

Câu 2: Cho pt \(y=|x|+2x\). Chọn kết luận đúng

A.Đths đi qua điểm\((1;2)\)

B.Đths không cắt trục Ox

C.Hs nghịch biến trên\((-\infty;0) \)

D.Hs đồng biến trên toàn trục số

Câu 3: Cho 1 tam giác vuông với độ dài các cạnh được tính theo đơn vị là cm. Nếu tăng các cạnh góc vuông lên 2cm và 3cm thì S tam giác ban đầu tăng lên 50\(cm^2\) . Nếu giảm cả hai cạnh góc vuông đi 2cm thì S tam giác ban đầu giảm đi 32\(cm^2\). Tích hai cạnh góc vuông của tam giác ban đầu là

A. 208\(cm^2\)  B.36\(cm^2\)      C.32\(cm^2\)     D.34\(cm^2\)

Câu 4: Cho hình vuông ABCD có độ dài cạnh bằng a. Hai điểm M và N lần lượt là trung điểm của BC và CD. Tích vô hướng \(\overrightarrow{AM}.\overrightarrow{AN}\)=?

Câu 5: Đths \(y=-x+2m+1\) tạo với các trục tọa độ 1 tam giác có S=18. Tính giá trị của m

Câu 6: Phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm âm phân biệt \(x_1,x_2\). Khi đó mệnh đề nào sau đây sai?

A. Parabol \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt

B. Phương trình \(cx^2+bx+a=0\) có hai nghiệm phân biệt \(\frac{1}{x_1}, \frac{1}{x_2}\)

C. Đỉnh của parabol \(y=ax^2+bx+c\) nằm ở phía bên phải trục tung

D. Biểu thức \(ax^2+bx+c\) có thể viết dưới dạng \(a(x-x_1)(x-x_2)\)

1
17 tháng 12 2020

1.

Vì \(y=\sqrt{2}\) là hàm hằng nên với mọi giá trị của \(x\) thì đều nhận \(\sqrt{2}\) là giá rị của \(y\)

\(\Rightarrow B\)

2. \(D\)

3. 

Giải hệ \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)

\(\Rightarrow xy=208\Rightarrow A\)

4.

\(\overrightarrow{AM}.\overrightarrow{AN}=-a^2\)

5.

\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)

6. \(C\)

17 tháng 12 2020

Câu 4: Đáp án

A. \(2a^2\)   B.\(a^2\)   C.\(\frac{1}{2}a^2\)    D.\(\frac{-1}{2}a^2\)

Không có đáp án \(-a^2 \)