K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Lời giải:

a)

\(f(x)=g(x)\Leftrightarrow 7x=2+5x^2\)

\(\Leftrightarrow 5x^2+2-7x=0\)

\(\Leftrightarrow (5x^2-5x)-(2x-2)=0\)

\(\Leftrightarrow 5x(x-1)-2(x-1)=0\Leftrightarrow (5x-2)(x-1)=0\)

\(\Rightarrow \left[\begin{matrix} x=\frac{2}{5}\\ x=1\end{matrix}\right.\)

b)

Ta có: \(\left\{\begin{matrix} f(-x)=7(-x)=-7x\\ -f(x)=-7x\end{matrix}\right.\Rightarrow f(-x)=-f(x)\)

\(\left\{\begin{matrix} g(-x)=2+5(-x)^2=2+5x^2\\ g(x)=2+5x^2\end{matrix}\right.\Rightarrow g(-x)=g(x)\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

c)

Xét \(x_1< x_2< 0\) đều thuộc TXĐ:

Khi đó:

\(g(x_1)-g(x_2)=2+5x_1^2-(2+5x_2^2)=5x_1^2-5x_2^2=5(x_1-x_2)(x_1+x_2)\)

\(x_1< x_2< 0\Rightarrow x_1-x_2< 0; x_1+x_2< 0\)

Do đó: \(g(x_1)-g(x_2)=5(x_1-x_2)(x_1+x_2)>0\Rightarrow g(x_1)> g(x_2)\)

Vậy hàm số nghịch biến khi $x< 0$

------------

Xét \(x_1> x_2>0\) thuộc TXĐ:

Khi đó:

\(g(x_1)-g(x_2)=(2+5x_1^2)-(2+5x_2^2)=5x_1^2-5x_2^2=5(x_1-x_2)(x_1+x_2)\)

\(x_1> x_2>0\Rightarrow x_1-x_2>0; x_1+x_2>0\)

\(\Rightarrow g(x_1)-g(x_2)>0\Rightarrow g(x_1)> g(x_2)\)

Vậy hàm số đồng biến khi $x>0$

2 tháng 3 2019

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Hai hàm số

Để học tốt Toán 9 | Giải bài tập Toán 9

là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

Bài 1:

Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)

\(\Leftrightarrow3x^2-11x=0\)

\(\Leftrightarrow x\left(3x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)

em xin lỗi nhưng em chưa đủ tuổi để làm bài này xin cáo từ

xin lỗi quản lý olm ạ

14 tháng 6 2021


a) Ta có:
f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.
b) Ta có: 
g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.
c) Khi biến xx lấy cùng một giá trị thì giá trị của hàm số y=f(x)y=f(x) luôn nhỏ hơn giá trị tương ứng của hàm số y=g(x)y=g(x) là 3 đơn vị.

24 tháng 10 2021

Vì \(-4< 0\) nên \(y=f\left(x\right)=-4x+3\) nghịch biến trên R

Vì \(\dfrac{1}{4}>0\) nên \(y=g\left(x\right)=\dfrac{1}{4}x-6\) đồng biến trên R

c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị

26 tháng 8 2021

Mình chỉ lo bạn không dịch được chữ =)

Cho \(f\left(x\right)=mx-2\) và \(g\left(x\right)=\left(m^2+1\right)x+5\)

\(f\left(x\right)+g\left(x\right)=mx-2+m^2x+x+5\)

\(=mx+m^2x+x+3\)

\(=x\left(m+m^2+1\right)+3\)

Ta có: \(m^2+m+1=\left(m+1\right)^2+\frac{3}{4}>0\forall m\)

\(\Rightarrow f\left(x\right)+g\left(x\right)\) là hàm số bậc nhất đồng biến

\(f\left(x\right)-g\left(x\right)=mx-2-m^2x-x-5\)

\(=x\left(m-m^2-1\right)-5\)

Ta có: \(-m^2+m-1=-m^2+2.\frac{1}{2}m-\frac{1}{4}-\frac{3}{4}=-\left(m-\frac{1}{2}\right)^2-\frac{3}{4}< 0\forall m\)

\(\Rightarrow f\left(x\right)-g\left(x\right)\) là hàm số bậc nhất nghịch biến

26 tháng 8 2021

Sai thông cảm :>

undefined

24 tháng 10 2016

+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có : 

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)

Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)

\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.

+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.