Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2\ne n+3\end{matrix}\right.\Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)
b: Để hai đường thẳng cắt nhau thì \(m-1\ne-2m+1\)
\(\Leftrightarrow3m\ne2\)
hay \(m\ne\dfrac{2}{3}\)
a: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)
Vậy: Không có (m,n) nào để hai đường thẳng trùng nhau
Để hai đường thẳng trùng nhau thì
\(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)
a: Đặt (d1): \(y=\left(2m-1\right)x+n+1\)
(d2): \(y=\left(5-m\right)x-1-n\)
Để (d1) cắt (d2) thì \(2m-1\ne5-m\)
=>\(3m\ne6\)
=>\(m\ne2\)
b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1\ne-1-n\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3m=6\\2n\ne-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\n\ne-1\end{matrix}\right.\)
c: Để \(\left(d1\right)\equiv\left(d2\right)\) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1=-n-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3m=6\\2n=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\n=-1\end{matrix}\right.\)
Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:
2 = 2m + 1 và 3k = 2k – 3
\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)