Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi B', C' lần lượt là giao điểm khác A của AB, AC với (O').
Do BM, CM là tiếp tuyến của (O') nên ta dễ dàng chứng minh được:
\(BM^2=BA.BB'\); \(CM^2=CA.CC'\)
\(\Rightarrow\dfrac{BM^2}{CM^2}=\dfrac{BA.BB'}{CA.CC'}\). (1)
\(\Delta AOC\sim\Delta AO'C'(g.g)\Rightarrow \frac{AC}{AC'}=\frac{AO}{AO'}\).
Tương tự, \(\frac{AB}{AB'}=\frac{AO}{AO'}\).
Do đó \(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\Rightarrow\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\Rightarrow\dfrac{AB}{AC}=\dfrac{BB'}{CC'}\). (2)
Từ (1), (2) suy ra \(\dfrac{BM}{CM}=\dfrac{AB}{AC}\).
Theo tính chất đường phân giác đảo thì AM là đường phân giác ngoài của tam giác ABC
\(\Rightarrow\widehat{MAB}+\widehat{MAC}=180^o\Rightarrow180^o+\widehat{BAC}=2\widehat{EAC}\)
\(\Rightarrow180^o-\widehat{EAC}=\dfrac{180^o-\widehat{BAC}}{2}\). (3)
Các tứ giác FDEA, DBAC nội tiếp nên \(\widehat{FDB}=180^o-\widehat{EAC};\widehat{BDC}=180^o-\widehat{BAC}\). (4)
Từ (3), (4) suy ra \(\widehat{FDB}=\dfrac{\widehat{BDC}}{2}\) nên DF là phân giác góc BDC.
Gọi D là giao điểm thứ hai của AC với (O).
Khi đó \(\widehat{BAD}=90^o\) nên BD là đường kính của (O), do đó B, O, D thẳng hàng.
Kẻ AE // BD \((E\in BD)\).
Ta có \(\widehat{DAO}=\widehat{CAO'}\) mà các tam giác DAO và CAO' cân lần lượt tại O và O' nên \(\widehat{ODA}=\widehat{O'CA}\). Từ đó OD // O'C.
Theo định lý Thales: \(\dfrac{AD}{AC}=\dfrac{AO}{AO'}=\dfrac{R}{R'}\Rightarrow\dfrac{AC}{CD}=\dfrac{R'}{R+R'}\).
Mặt khác cũng theo định lý Thales: \(\dfrac{AE}{BD}=\dfrac{CA}{CD}\Rightarrow\dfrac{AE}{2R}=\dfrac{R'}{R+R'}\Rightarrow AE=\dfrac{2RR'}{R+R'}\RightarrowẠH\le AE=\dfrac{2RR'}{R+R'}\) không đổi.
Đẳng thức xảy ra khi và chỉ khi \(E\equiv H\), tức BC vuông góc với BD hay BC là tiếp xúc với (O) tại B.
a) AC \(\perp\) DE tại M
=> MD = ME
Tứ giác ADBE có:
MD =ME, MA = MB (gt)
AB \(\perp\) DE
=> Tứ giác DAEB là hình thoi
b) Ta có: góc BIC = 90o (góc nội tiếp chắn nửa đường tròn (O'))
góc ADC = 90o (góc nội tiếp chắn nửa đường tròn (O))
=> BI \(\perp\) CD , AD \(\perp\) DC, nên AI // BI
mà BE //AD => E,B,I thẳng hàng
Tam giác DIE có MI là đường trung tuyến với cạnh huyền => MI = MD
Do MI =MD(cmt)
=> tam giác MDI cân tại M
=> góc MID = góc MDI
O'I = O'C=R'
=> tam giác O'IC cân tại O'
=> Góc O'IC = góc O'CI
Suy ra: \(\widehat{MID}+\widehat{O'IC}=\widehat{MDI}+\widehat{O'CI}=90^o\) (tam giác MCD vuông tại M)
Vậy MI vuông góc O'I tại , O'I =R' bán kính đường tròn(O')
=> MI là tiếp tuyến đường tròn (O')
c) \(\widehat{BIC}=\widehat{BIM}\) (góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BI)
\(\widehat{BCI}=\widehat{BIH}\) (cùng phụ góc HIC)
=> \(\widehat{BIM}=\widehat{BIH}\)
=> IB là phân giác \(\widehat{MIH}\) trong tam giác MIH
ta lại có BI vuông góc CI
=> IC là phân giác ngoài tại đỉnh I của tam giác MIH
Áp dụng tính chất phân giác đối với tam giác MIH
\(\dfrac{BH}{MB}=\dfrac{IH}{MI}=\dfrac{CH}{CM}\) => \(CH.BM=BH.MC\) (đpcm)
a) Vì đường tròn (O) và (O') tiếp xúc ngoài tại A nên O, A và O’ thẳng hàng.
Ta có: MB = MC (M là TĐ của BC)
Xét (O) ta có: DE vg góc BC (gt)
mà M là TĐ của BC
Suy ra : M là TĐ của DE ( đường kính vuông góc với dây cung)
Xét TG BDCE có 2 đường chéo DE và BC cắt nhau tại trung điểm M của mỗi đường
Suy ra: BDCE là hình bình hành.
(Bổ sung)
Lại có: BC ⊥ DE
Suy ra tứ giác BDCE là hình thoi