Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(O) và (O') có 2 vị trí tương đối như hình vẽ, tâm O' có thể nằm ở O' hoặc \(O'_1\)
Gọi H là giao điểm AB và OO', theo tính chất 2 đường tròn cắt nhau ta có H là trung điểm AB và \(OO'\perp AB\)
\(\Rightarrow AH=BH=\dfrac{AB}{2}=4\left(cm\right)\)
Áp dụng Pitago cho tam giác vuông OAH:
\(OH=\sqrt{OA^2-AH^2}=\sqrt{6^2-4^2}=2\sqrt{5}\)
Pitago cho tam giác vuông O'AH:
\(O'H=\sqrt{O'A^2-AH^2}=\sqrt{5^2-4^2}=3\)
\(\Rightarrow\left[{}\begin{matrix}OO'=OH+O'H=2\sqrt{5}+3=7,47\\OO'=OH-O'H=2\sqrt{3}-3=1,47< 2\left(loại\right)\end{matrix}\right.\)
a: Ta có:(O) và (O') tiếp xúc ngoài tại A
=>A nằm giữa O và O'
=>B,O,A,O',C thẳng hàng
=>BA và CA lần lượt là đường kính của (O) và (O')
Kẻ tiếp tuyến chung AI của (O) và (O'), I\(\in\)DE
Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: ID=IA
IA=IE
Do đó: ID=IE
=>I là trung điểm của DE
Xét ΔADE có
AI là đường trung tuyến
AI=1/2DE
Do đó: ΔADE vuông tại A
=>\(\widehat{DAE}=90^0\)
b: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)MB tại D
Xét (O') có
ΔAEC nội tiếp
AC là đường kính
Do đó: ΔAEC vuông tại E
=>AE\(\perp\)MC tại E
Xét tứ giác MDAE có \(\widehat{MDA}=\widehat{MEA}=\widehat{DAE}=90^0\)
nên MDAE là hình chữ nhật
c: ta có: MDAE là hình chữ nhật
=>MA cắt DE tại trung điểm của mỗi đường
mà I là trung điểm của DE
nên I là trung điểm của MA
=>MA\(\perp\)BC tại A
=>MA là tiếp tuyến chung của (O) và (O')
Xét ΔMC'A và ΔMBD' có
góc MC'A=góc MBD'
góc M chung
=>ΔMC'A đồng dạng với ΔMBD'
=>MC'/MB=MA/MD'
=>MC'*MD'=MA*MB
Xét ΔMAC và ΔMDB có
góc MAC=góc MDB
góc M chung
=>ΔMAC đồng dạng với ΔMDB
=>MA/MD=MC/MB
=>MA*MB=MD*MC
=>MD*MC=MC'*MD'
=>MD/MC'=MD'/MC
=>ΔMDD' đồng dạng với ΔMC'C
=>góc MDD'=góc MC'C
=>góc D'C'C+góc D'DC=180 độ
=>CDC'D' nội tiếp
a: góc CAB=1/2*sđ cung CB=90 độ
góc BAD=1/2*sđ cung BD=90 độ
góc CAD=góc CAB+góc BAD
=90 độ+90 độ=180 độ
=>C,A,D thẳng hàng
a) Câu này chỉ cần CM tam giác AOO' vuông tại A thì sẽ ra
b) Gọi H là giao điểm của OO' và AB
Xét ∆ AOO' vuông tại A có đường cao AH nên: (cứ nghĩ là đã CM đc rồi đi :))
\(AO.AO'=AH.BC\) (hệ thức lượng)
\(\Rightarrow\)\(AH=\dfrac{AO.AO'}{OO'}\)
hay \(AH=\dfrac{3.4}{5}=2,5\left(cm\right)\)
Xét 2 đường tròn (O) và (O') có:
Dây AB đi qua OO' (gt)
\(\Rightarrow\) OO' là đường trung trực của AB
\(\Rightarrow\) H là trung điểm của AB
\(\Rightarrow\) \(AB=2AH\)
hay AB=2.2,5 =5 (cm)