Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(\Delta MCB~\Delta MDC\left(g.g\right)\Rightarrow\frac{MC}{MD}=\frac{BC}{CD}\)( 1 )
\(\Delta MAB~\Delta MDA\left(g.g\right)\Rightarrow\frac{MA}{MD}=\frac{AB}{AD}\)( 2 )
Lại có MA = MC . Từ ( 1 ) và ( 2 ) suy ra \(\frac{BC}{CD}=\frac{AB}{AD}\Rightarrow AD.BC=AB.CD\)
Áp dụng định lí Ploleme với tứ giác ABCD, ta có :
\(AB.CD+AD.BC=AC.BD\)
\(\Rightarrow BC.AD=AC.BD-AB.CD=\frac{1}{2}AC.BD\)
\(\Rightarrow\frac{AC}{AD}=\frac{2BC}{BD}\)( 3 )
\(\Delta NBE~\Delta NDB\left(g.g\right)\Rightarrow\frac{NB}{ND}=\frac{BE}{DB}\); \(\Delta NCE~\Delta NDC\left(g.g\right)\Rightarrow\frac{NC}{ND}=\frac{CE}{CD}\)
lại có : NB = NC \(\Rightarrow\frac{BE}{BD}=\frac{CE}{CD}\Rightarrow BE.CD=CE.BD\)
Áp dụng định lí Ptoleme với tứ giác BECD, ta có :
\(BE.CD+CE.BD=BC.DE\Rightarrow BE.CD=CE.BD=\frac{1}{2}BC.DE\)
\(\Delta PBC~\Delta PDB\left(g.g\right)\Rightarrow\frac{PC}{PB}=\frac{PB}{PD}\Rightarrow PC.PD=PB^2\)
Mà \(\frac{PC}{PB}=\frac{PB}{PD}=\frac{BC}{BD}\)
Mặt khác : \(\frac{PC}{PD}=\frac{PC.PD}{PD^2}=\left(\frac{PB}{PD}\right)^2=\left(\frac{BC}{BD}\right)^2\)( 4 )
suy ra : \(\frac{PC}{PD}=\left(\frac{BC}{BD}\right)^2=\left(\frac{2CE}{DE}\right)^2\)
giả sử AE cắt CD tại Q
\(\Rightarrow\Delta QEC~\Delta QDA\left(g.g\right)\Rightarrow\frac{QC}{QD}=\left(\frac{2CE}{DE}\right)^2\)
\(\Rightarrow\frac{QC}{QD}=\frac{PC}{PD}\Rightarrow P\equiv Q\)
Vậy 3 điểm A,E,P thẳng hàng
v mình quên nối AE cắt CD. hay là nối 3 điểm A,E,P mà thôi, không sao.
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)