K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

DM may

17 tháng 11 2016

sao, next

31 tháng 7 2020

Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))

Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.

Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)

Thay x=1 vào \(f\left(x\right)\)\(f\left(1\right)=1^{2018}+1^{2018}-2=0\)

\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)

\(\Rightarrowđpcm\)

31 tháng 7 2020

\(g\left(x\right)=x^2-x\)

g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)

Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)

+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)

+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)

Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)

Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.

Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$

Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$

$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$

$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)

Do đó ta có đpcm.

3 tháng 3 2021

Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??

20 tháng 12 2016

1

17 tháng 1 2017

Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)

Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1

Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1

19 tháng 4 2019

EM LÀ CON GÁI HAY TRAI VẬY 

19 tháng 4 2019

Có: \(x+y+z⋮6\)

\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)

\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)

\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)

\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)

\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)

\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)

Ta có:\(x+y+z=6k\left(k\in Z\right)\)

\(\Rightarrow\)x+y+z là số chẵn.

\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn

\(\Rightarrow xyz⋮2\)

\(\Rightarrow3xyz⋮6\)

\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))

đpcm

29 tháng 3 2018

a)\(\left(3x^2+x-2016\right)^2+4\left(x^2+506x-2017\right)^2=4\left(3x^2+x-2016\right)\cdot\left(x^2+506x-2017\right)\)

\(\Leftrightarrow\left(3x^2+x-2016\right)^2-4\left(3x^2+x-2016\right)\left(x^2+506x-2017\right)+4\left(x^2+506x-2017\right)^2=0\)

\(\Leftrightarrow\left(3x^2+x-2016-2x^2-1012x+4034\right)^2=0\)

\(\Leftrightarrow x^2-1011x+2018=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1009\end{matrix}\right.\)