Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
\(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)
\(=\left(2x^4-x^4\right)-3x^2+\left(5x-3x\right)-5\)
\(=x^4-3x^2+2x-5\)
\(g\left(x\right)=-2x^3+10x-1-7x^2+x^4-15x+10x^2\)
\(=x^4-2x^3+\left(-7x^2+10x^2\right)+\left(10x-15x\right)-1\)
\(=x^4-2x^3+3x^2-5x-1\)
\(f\left(x\right)+g\left(x\right)=\left(x^4-3x^2+2x-5\right)+\left(x^4-2x^3+3x^2-5x-1\right)\)
\(=\left(x^4+x^4\right)-2x^3+\left(-3x^2+3x^2\right)+\left(2x-5x\right)+\left(-5-1\right)\)
\(=2x^4-2x^3-3x-6\)
a, \(f\left(x\right)=2x^2+6x^4-3x^3+2011\)
\(=6x^4-3x^3+2x^2+2011\)
\(g\left(x\right)=2x^3-5x^2-3x^4-2012\)
\(=-3x^4+2x^3-5x^2-2012\)
b, \(f\left(x\right)+g\left(x\right)=6x^4-3x^3+2x^2+2011-3x^4+2x^3-5x^2-2012\)
\(=\left(6x^4-3x^4\right)+\left(2x^3-3x^3\right)+\left(2x^2-5x^2\right)+\left(2011-2012\right)\)
\(=3x^4-x^3-3x^2-1\)
\(f\left(x\right)-g\left(x\right)=6x^4-3x^3+2x^2+2011-\left(-3x^4+2x^3-5x^2-2012\right)\)
\(=6x^4-3x^3+2x^2+2011+3x^4-2x^3+5x^2+2012\)
\(=\left(6x^4+3x^4\right)-\left(3x^3+2x^3\right)+\left(2x^2+5x^2\right)+\left(2011+2012\right)\)
\(=9x^4-5x^3+7x^2+4023\)
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)
bài 3:
a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5
= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5
= 7x4+2x3+2x2-x+5
g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3
=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5
= 7x4+x3+x2+x+5
b) h(x)=f(x)-g(x)
=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)
=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5
=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)
=x3+x2-2x
Bài 4:
a) f(x)=5x4+x3-x+11+x4-5x3
=(5x4+x4)+(x3-5x3)-x+11
=6x4-4x3-x+11
g(x)=2x3+3x4+9-4x3+2x4-x
=(3x4+2x4)+(2x3-4x3)-x+9
=5x4-2x3-x+9
b) h(x)=f(x)-g(x)
=(6x4-4x3-x+11)-(5x4-2x3-x+9)
=6x4-4x3-x+11-5x4-2x3-x+9
=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)
= x4-6x3-2x+20
c) Với x = -2
Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0
Vậy x = -2 không phải là nghiệm của đa thức h(x)
đúng thì tặng 1 tick cho mk nk các pn!!!
Bài 1:
a) Ta có: \(f\left(x\right)=x^2+2x^4+10x-3x^2+x^2-x+5\)
\(=2x^4-x^2+9x+5\)
Ta có: \(g\left(x\right)=x-5x-x^2-x^4+3x+x^2-2x^2-2x^3-3x\)
\(=-x^4-2x^3-2x^2-4x\)
b) Ta có: \(f\left(x\right)+g\left(x\right)\)
\(=2x^4-x^2+9x+5-x^4-2x^3-2x^2-4x\)
\(=x^4-2x^3-3x^2+5x+5\)
Ta có: \(f\left(x\right)-g\left(x\right)\)
\(=2x^4-x^2+9x+5+x^4+2x^3+2x^2+4x\)
\(=3x^4+2x^3+x^2+13x+5\)
c) Ta có: \(f\left(x\right)+g\left(x\right)=x^4-2x^3-3x^2+5x+5\)
nên khi x=-1 thì \(f\left(-1\right)+g\left(-1\right)=\left(-1\right)^4-2\cdot\left(-1\right)^3-3\cdot\left(-1\right)^2+5\cdot\left(-1\right)+5\)
\(=1+2-3-5+5\)
\(=0\)
Ta có: \(f\left(x\right)-g\left(x\right)=3x^4+2x^3+x^2+13x+5\)
nên khi x=-1 thì \(f\left(-1\right)-g\left(-1\right)=3\cdot\left(-1\right)^4+2\cdot\left(-1\right)^3+\left(-1\right)^2+12\cdot\left(-1\right)+5\)
\(=3+2+1-12+5\)
\(=-1\)
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
a) Ta có: \(f\left(x\right)=5x-3x^2+2x^4-3x-x^4-5\)
\(=x^4-3x^2+2x-5\)
Ta có: \(g\left(x\right)=2x^3+10x-1-7x^2-15x+10x^2\)
\(=2x^3+3x^2-5x-1\)
b) Ta có: f(x)+g(x)
\(=x^4-3x^2+2x-5+2x^3+3x^2-5x-1\)
\(=x^4-2x^3-3x-6\)
Ta có: f(x)-g(x)
\(=x^4-3x^2+2x-5-2x^3-3x^2+5x+1\)
\(=x^4-2x^3-6x^2+7x-4\)
Thank bn