K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

a,A(\(x\)) = 13\(x^4\) + 3\(x^2\) + 15\(x\) - 8\(x\) - 7 - 7\(x\) + 7\(x^2\) - 10\(x^4\)

A(\(x\)) = (13\(x^4\) - 10\(x^4\)) + (3\(x^2\) + 7\(x^2\)) + (15\(x\) - 8\(x\) - 7\(x\)) - 7

A(\(x\)) = 3\(x^4\) + 10\(x^2\) + 0 - 7

A(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7

B(\(x\)) = -4\(x^4\) - 10\(x^2\) + 10 + 5\(x^4\) - 3\(x\) - 18 + 30 - 5\(x^2\)

B(\(x\)) = (-4\(x^4\) + 5\(x^4\)) - (10\(x^2\) + 5\(x^2\)) - 3\(x\) + (10 + 30 - 18)

B(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\)  + 22

b,C(\(x\)) = A(\(x\)) + B(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7 + \(x^4\) - 15\(x^2\) - 3\(x\) + 22

C(\(x\)) = 4\(x^4\)  - (15\(x^2\) - 10\(x^2\)) - 3\(x\) + 22

C(\(x\)) = 4\(x^4\) - 5\(x^2\) - 3\(x\) + 15

c, D(\(x\)) = B(\(x\)) - A(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22 - 3\(x^4\) - 10\(x^2\) + 7

D(\(x\)) = (\(x^4\) - 3\(x^4\)) - (15\(x^2\) + 10\(x^2\)) + (22 + 7)

D(\(x\)) = - 2\(x^4\) - 25\(x^2\) + 29

d, Thay \(x\) = 1 vào C(\(x\)) ta có: C(1) = 4.14 - 5.12 -3.1 + 15 = 11 (xem lại đề bài em nhá)

 

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)

`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`

`= 3x^5 - 4x^2 - 7x + 2`

`b)`

`A(x)+B(x)`

`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)

`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`

`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`

`= -4x - 5`

`b)`

`A(x) - B(x)`

`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`

`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`

`= 6x^5 - 8x^2 - 10x + 9`

`c)`

Thay `x=-1` vào đa thức `A(x)`

` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`

`= 3*(-1) - 4*1 + 7 + 2`

`= -3 - 4 + 7 + 2`

`= -7+7 + 2`

`= 2`

Bạn xem lại đề ;-;.

`2,`

`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)

`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`

`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`

`= 6x^2 - x - 2 - (6x^2 - x - 1)`

`= 6x^2 - x - 2 - 6x^2 + x + 1`

`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`

`= -1`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

2:

M=6x^2+3x-4x-2-6x^2+3x-2x+1

=-1

1;

a: A(x)=3x^5-4x^2-7x+2

b: B(x)=-3x^5+4x^2+3x-7

B(x)+A(x)

=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7

=-4x-5

A(x)-B(x)

=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7

=-6x^5-8x^2-10x+9

 

a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)

\(B\left(x\right)=2x^4-5x^3-x+9\)

\(C\left(x\right)=x^4+4x^2+5\)

A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2

B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9

b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7

N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11

c: Q(x)=-N(x)=4x^3+3x^2+10x-11

Ta có: \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=9x^4+2x^2-x+5\)

Ta có: \(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2-3x-1\)

\(=-x^4-x^3-2x^2-2x-1\)

Ta có: P(x)+Q(x)

\(=9x^4+2x^2-x+5-x^4-x^3-2x^2-2x-1\)

\(=8x^4-x^3-3x+4\)

Ta có: P(x)-Q(x)

\(=9x^4+2x^2-x+5+x^4+x^3+2x^2+2x+1\)

\(=10x^4+x^3+4x^2+x+6\)

23 tháng 8 2023

a) Để thu gọn đa thức Px, ta sắp xếp các hạng tử theo lũy thừa giảm dần của biến x:

Px = x⁴ - 2x³ + x - 5 + / 3x / -2x + 2x³ = x⁴ + 2x³ - 2x³ + x + / 3x / -2x = x⁴ + (2x³ - 2x³) + (x + / 3x / -2x) = x⁴ + (x + / 3x / -2x)

Tương tự, để thu gọn đa thức Qx, ta sắp xếp các hạng tử theo lũy thừa giảm dần của biến x:

Qx = (2x² - x³) - (2 - x⁴ - x³) - 3x = -x³ + 2x² - 2 + x⁴ + x³ - 3x = x⁴ + (-x³ + x³) + 2x² - 3x - 2 = x⁴ + 2x² - 3x - 2

b) Để tính Ax = Px - Qx, ta trừ từng hạng tử của Qx từ Px:

Ax = (x⁴ + (x + / 3x / -2x)) - (x⁴ + 2x² - 3x - 2) = x⁴ + x + / 3x / -2x - x⁴ - 2x² + 3x + 2 = x⁴ - x⁴ + x + / 3x / -2x - 2x² + 3x + 2 = x + / 3x / -2x - 2x² + 3x + 2

c) Để chứng tỏ x = 1 là một nghiệm của đa thức Ax, ta thay x = 1 vào Ax và kiểm tra xem kết quả có bằng 0 hay không:

Ax = 1 + / 3(1) / -2(1) - 2(1)² + 3(1) + 2 = 1 + 3/2 - 2 + 3 + 2 = 6.5

Vì Ax không bằng 0 khi thay x = 1, nên x = 1 không phải là một nghiệm của đa thức Ax.

a: P(x)=x^4-2x^3+x+2x^3-2x-5+3x

=x^4-x+3x-5

=x^4+2x-5

Q(x)=2x^2-x^3-2+x^4+x^3-3x

=x^4+2x^2-3x-2

b: A(x)=P(x)-Q(x)

=x^4+2x-5-x^4-2x^2+3x+2

=-2x^2+5x-3

c: A(1)=-2+5-3=0

=>x=1 là nghiệm của A(x)

23 tháng 12 2018

Phép nhân và phép chia các đa thức

Ta có: \(\dfrac{3x^4-8x^3-10x^2+6x-3}{3x^2-2x+1}\)

\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5+2x+2}{3x^2-2x+1}\)

\(=x^2-2x-5+\dfrac{2x+2}{3x^2-2x+1}\)

25 tháng 8 2016

1. Ta có:

 \(P=ax^3+bx^2+25x+5ax^2+5bx+125=ax^3+\left(b+5a\right)x^2+\left(25+5b\right)x+125\)

Vậy để P = Q thì \(\hept{\begin{cases}a=1\\b+5a=0\\25+5b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}}\)

2. Hoàn toàn tương tự.