Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)
=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)
Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x
Giả sử \(x^2-2x+a=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)
Để phương trình (1)có nghiệm thì 4-4a>=0
=>a<=1
Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1
Bài 3:
1:
AH=AO
=>H trùng với O
=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác
=>ΔABC đều
=>\(\widehat{BAC}=60^0\)
a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)
\(f\left(-2\right)=-8a+4b-2c+d\)
\(=-8a+4\left(3a+c\right)-2c+d\)
\(=-8a+12a+4c-2c+d\)
\(=4a+2c+d\)
=>f(1)=f(-2)
b: Đặt \(h\left(x\right)=0\)
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
Đặt g(x)=0
\(\Leftrightarrow x^2+5x+1=0\)
\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)
Do đó PT có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)
=>h(x) và g(x) khôg có nghiệm chung