K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

a)F(x)=5x2-7+6x-8x3-x4=\(x^4-8x^3+5x^2+6x-7\)

\(G\left(x\right)=x^4+5+8x^3-5x^2=x^4+8x^3-5x^2+5\)

b)\(F\left(x\right)+G\left(x\right)=x^4-8x^3+5x^2+6x-7+x^4+8x^3-5x^2+5\)

\(=x^4+x^4-8x^3+8x^3+5x^2-5x^2+6x-7+5\)

=\(2x^4+6x-2\)

\(F\left(x\right)-G\left(x\right)=x^4-8x^3+5x^2+6x-7-x^4-8x^3+5x^2-5\)

\(=x^4-x^4-8x^3-8x^3+5x^2+5x^2+6x-7-5\)

=-16x3+10x2+6x-12

\(P\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(=4x^5+2x^3+x^2-x-x^4-3x^2+2x+5\)

\(=4x^5-x^4+2x^3-2x^2+x+5\)

15 tháng 12 2021

Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x

Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x

⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0

⇔[x=tx=1−t⇔[x=tx=1−t

⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m

⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1

Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:

−x2+x+1=−x2+3x−x2+x+1=−x2+3x

⇔x=12⇒y=54⇔x=12⇒y=54

Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

1:

\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)

=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)

Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x

Giả sử \(x^2-2x+a=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)

Để phương trình (1)có nghiệm thì 4-4a>=0

=>a<=1

Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1

Bài 3:

1:

AH=AO

=>H trùng với O

=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác

=>ΔABC đều

=>\(\widehat{BAC}=60^0\)

 

16 tháng 2 2021

Đáp án: D

A: \(f(x)=x^2+2x-x^2=2x\) → Bậc 1.

B: \(f(x)=x+3\) → Bậc 1.

C: Bậc 4.

a: \(A=\left\{0;1;2;3;4;5\right\}\)

b: \(B=\left\{2;3;4;5\right\}\)

c: \(C=\left\{0;1;-1;2;-2;3;-3\right\}\)

Câu 2: 

\(2\left(3x-4\right)-3\left(2x+3\right)+\left(3-5x\right)-\left(-4x+2\right)=0\)

\(\Leftrightarrow6x-8-6x-9+3-5x+4x-2=0\)

=>-x-16=0

=>x=-16

5 tháng 5 2018

a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3

g(-1) = 0,5; g(-2) = 2; g(0) = 0

b) f(x) = 2 ⇒ x = 1

g(x) = 2 ⇒ x = 2 hoặc x = -2