Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
an= a1. q1n-1, q1 là hằng số
bn= \(b_1q_2^{n-1}\), q2 là hằng số
Khi đó: an.bn = = a1. q1n-1. b1. q1n-1 = (a1b1)(q1q2)n-1
Vậy dãy số anbn là một cấp số nhân có công bội : q = q1q2
Ví dụ:
1, 2, 4 ,... là cấp số nhân có công bội q1 = 2
3, 9, 27, .... là cấp số nhân có công bội q2 = 3
⇒ Suy ra: 3, 8, 108.. là cấp số nhân có công bội: q = q1q2 = 2.3 = 6
Giả sử có hai cấp số cộng (un) với công sai d1 và (vn) với công sai d2.
Xét dãy (an) với an = un + vn
Ta có: an + 1 – an = (un + 1 + vn + 1) – (un + vn)
= (un + d1 + vn + d2) – (un + vn)
= d1 + d2 = const
⇒(an) là cấp số cộng với công sai d1 + d2.
Ví dụ:
CSC (un): 1; 4; 7; 10; 13; 16; 19; …. có công sai d1 = 3 ;
CSC (vn): 4 ; 6 ; 8 ; 10 ; 12 ; 14 ; 16 … có công sai d2 = 2.
⇒ (an): 5; 10; 15; 20; 25; 30; 35; … có công sai d = 5.
Gọi (un) và (an) là hai cấp số cộng có công sai lần lượt là \(d_1\) và d2 và có cùng n số hạng.
Ta có:
un = u1 + (n -1) d1
an = a1 + (n – 1)d2
⇒ un + an = u1 + a1 + (n – 1).(d1 + d2)
Vậy un + an là cấp số cộng có số hạng đầu là u1 + a1 và công sai là d1 + d2
Ví dụ:
1, 3, 5, 7 ,.... là cấp số cộng có công sai d1 = 2
0, 5, 10, 15,.... là cấp số cộng có công sai d2 = 5
⇒ 1, 8, 15, 22 ,... là cấp số cộng có công sai là d = d1 + d2 = 2 + 5 = 7
Giả sử cấp số nhân có số hạng đầu \(u_1\) và công bội \(q\)
\(\Rightarrow\) Số thứ 2 và thứ 3 lần lượt là \(u_1q\) và \(u_1q^2\)
Từ dữ kiện thứ 1 ta có: \(2\left(u_1q+2\right)=u_1+u_1q^2\)
\(\Rightarrow u_1\left(q^2-2q+1\right)=4\) (1)
Từ dữ kiện thứ 2 ta có: \(u_1\left(u_1q^2+9\right)=\left(u_1q+2\right)^2\)
\(\Rightarrow\left(u_1q\right)^2+9u_1=\left(u_1q\right)^2+4u_1q+4\)
\(\Leftrightarrow u_1\left(9-4q\right)=4\) (2)
Chia vế cho vế (1) và (2):
\(\Rightarrow q^2-2q+1=9-4q\)
\(\Leftrightarrow q^2+2q-8=0\Rightarrow\left[{}\begin{matrix}q=2\Rightarrow u_1=4\\q=-4\Rightarrow u_1=\dfrac{4}{25}\end{matrix}\right.\)
Gọi ba số đã cho u1,u2,u7 theo thứ tự là ba số của một cấp số cộng (un) và v1,v2, v3 của cấp số nhân (vn) . Theo giả thiết Ta có hệ:
Giải phương trình (6)
( 6 ) ⇔ u 1 q − 1 = 1 6 u 1 q − 1 q + 1 ⇔ u 1 q − 1 = 0 ( l o a i ) 1 = 1 6 q + 1
Thay vào (*), ta được
u 1 1 + 5 + 5 2 = 93 ⇔ u 1 = 3 = v 1
Suy ra
u 2 = u 1 . q = 3.5 = 15 = v 2 u 3 = u 1 . q 2 = 3.25 = 75 = v 3
Vậy tích ba số v 1 . v 2 . v 3 = 3.15.75 = 3375
Đáp án A
Gọi 3 số hạng của cấp số cộng là: \(5;5+d;5+2d\)
Gọi 3 số hạng của cấp số nhân là: \(5;5q;5q^2\).
Ta có hệ sau:\(\left\{{}\begin{matrix}5+2d=5q^2\\5+d=5q+10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5+2d=5q^2\\d=5q+5\end{matrix}\right.\)\(\Rightarrow5+2.\left(5q+5\right)=5q^2\)\(\Rightarrow\left\{{}\begin{matrix}q=-1\\q=3\end{matrix}\right.\).
Với \(q=-1\) thì \(d=5.q+5=5.\left(-1\right)+5=0\).
Với \(q=3\) thì \(d=5.q+5=5.3+5=20\).
Vậy
Với \(q=-1\):
3 số hạng của cấp số cộng là: 5; 5; 5.
3 số hạng của cấp số nhân là: 5; - 5; 5.
Với \(q=3\):
3 số hạng của cấp số cộng là: 5; 25; 45.
3 số hạng của cấp số nhân là: 5; 15; 45.
Giả sử có hai cấp số nhân (un) với công bội q1 và (vn) với công bội q2.
Xét dãy số (an) với an = un.vn với mọi n ∈ N*.
Ta có:
⇒ (an) là cấp số nhân với công bội q1.q2.
Ví dụ:
+ CSN (un) : 2 ; 4 ; 8 ; 16 ; 32 ; 64 ; … có công bội q1 = 2.
+ CSN (vn) : -1 ; 1 ; -1 ; 1 ; -1 ; 1 ; … có công bội q2 = -1.
⇒ CSN (an) : -2 ; 4 ; -8 ; 16 ; -32 ; 64 ; … có công bội q = -2.