K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)

b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)

<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)

<=> \(-x-5\sqrt{x}+14\ge0\)

<=> \(x+5\sqrt{x}-14\le0\)

<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)

<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)

Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)

<=> \(\sqrt{x}\le2\) <=> \(x\le4\)

Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25

và x thuộc Z => x = {0; 1; 2; 3}

d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)

M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)

Vậy MaxM = 1 khi x = 1

NV
17 tháng 9 2019

Câu 1:

\(\frac{A}{B}\ge\frac{x}{4}+5\Leftrightarrow\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{1}{\sqrt{x}-1}\ge\frac{x}{4}+5\)

\(\Rightarrow\sqrt{x}+4\ge\frac{x}{4}+5\Rightarrow x-4\sqrt{x}+4\le0\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2\le0\Rightarrow\sqrt{x}-2=0\Rightarrow x=4\)

Câu 2:

Bạn coi lại đề, biểu thức B không hợp lý

1 tháng 8 2021

bổ sung thêm đề bài là \(x\ge0;x\ne25\) nha

1 tháng 8 2021

\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(B=\frac{1}{\sqrt{x}+1}\)

\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)

\(P=\frac{4}{25-x}\)

bổ sung điều kiện cho câu b là x nguyên

\(TH1:x>25< =>P< 0\left(KTM\right)\)

\(TH2:x< 25< =>P>0\)mà x nguyên

\(\frac{4}{25-x}\le4\)

dấu "=" xảy ra khi \(x=24\)

\(< =>MAX:P=4\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0

Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)

Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)

Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)

do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)

Đến đây xét từng TH là  ra

8 tháng 3 2020

rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)

=\(1+\frac{5}{\sqrt{x}+1}\)

Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)

Đến đây thì ez rồi

NV
18 tháng 9 2019

ĐKXĐ: ...

\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+5}-\frac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\frac{25-x+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)

\(=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}+5\right)}{-\left(\sqrt{x}+3\right)}=\frac{5}{\sqrt{x}+3}\)

b/ \(B=\frac{x+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

\(\Rightarrow B\ge2\sqrt{\frac{\left(\sqrt{x}+3\right).25}{\sqrt{x}+3}}-6=4\)

\(B_{min}=4\) khi \(\left(\sqrt{x}+3\right)^2=25\Rightarrow x=4\)

14 tháng 7 2016

a/ \(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

   \(=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

    \(=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\left[\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

      \(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b/ Ta có: \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

    Để \(P\in Z\) thì \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

    + Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

    + Với \(\sqrt{x}+1=-1\Rightarrow\sqrt{x}=-2\left(vn\right)\)

    + Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)

    + Với \(\sqrt{x}+1=-2\Rightarrow\sqrt{x}=-3\left(vn\right)\)

                                         Vậy x = 0 thì P nguyên

14 tháng 7 2016

a) \(P=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)

\(=\frac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{x-1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để P nguyên thì \(\sqrt{x}+1\in\left\{1;2\right\}\Leftrightarrow x\in\left\{0\right\}\) (Vì x khác 1 - điều kiện)

c) \(\sqrt{x}+1\ge1\Leftrightarrow\frac{2}{\sqrt{x}+1}\le\frac{1}{2}\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\ge\frac{1}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\). Dấu đẳng thức xảy ra khi x = 0

Vậy Min P = 1/2 <=> x = 0