K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Câu hỏi của Le Minh Hieu - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

1 tháng 2 2021

O A B K C D E H M

a/

\(KD\perp AB\Rightarrow\widehat{CHB}=90^o\)

\(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn)

=> M và H cùng nhìn Bc dưới 1 góc \(=90^o\) Nên M và H cùng nằm trên đường tròn đường kính AB nên B;M;H;C cùng nằm trên 1 đường tròn

b/

Ta có \(AB\perp KD\Rightarrow HK=HD\) (đường kính vuông góc với dây cung thì chia đôi dây cung)

Xét tam giác AKD có AH vừa là đường cao vừa là đường trung trực nên tg AKD là tg cân tại A => AK=AD

=> số đo cung AK = số đo cung AD (hai dây cung bằng nhau thì căng hai cung bằng nhau)

Ta có

số đo \(\widehat{KMA}=\frac{1}{2}\) số đo cung AK (góc nội tiếp đường tròn)

số đo \(\widehat{AKD}=\frac{1}{2}\) số đo cung AD (góc nội tiếp đường tròn)

Mà số đo cung AK = số đo cung AD (cmt)

\(\Rightarrow\widehat{KMA}=\widehat{AKD}\)

Xét tg AKC và tg AMK có

\(\widehat{KAM}\) chung

\(\widehat{AKD}=\widehat{AMK}\left(cmt\right)\)

=> tg AKC đồng dạng tg AMK (g.g.g) \(\Rightarrow\frac{AK}{AM}=\frac{AC}{AK}\Rightarrow AK^2=AC.AM\left(dpcm\right)\)

c/

Xét tg vuông AHC và tg vuông AMB có \(\widehat{MAB}\) chung => tg AHC đồng dạng tg AMB 

\(\Rightarrow\frac{AH}{AM}=\frac{AC}{AB}\Rightarrow AH.AB=AC.AM=AK^2\)

\(\Rightarrow\frac{R}{2}.2R=AK^2=R^2\Rightarrow AK=R\)

Xét tg vuông AHK có

\(KH^2=AK^2-AH^2=R^2-\frac{R^2}{4}=\frac{3R^2}{4}\Rightarrow KH=\frac{R\sqrt{3}}{2}\)

\(KC=CH=\frac{KH}{2}=\frac{R\sqrt{3}}{4}\)

Xét tg vuông ACH có 

\(AC^2=CH^2+AH^2=\frac{3R^2}{16}+\frac{R^2}{4}=\frac{7R^2}{16}\Rightarrow AC=\frac{R\sqrt{7}}{4}\)

Mà \(AK^2=AC.AM\Rightarrow AM=\frac{AK^2}{AC}=\frac{R^2}{\frac{R\sqrt{7}}{4}}=\frac{4R\sqrt{7}}{7}\)

Ta có \(CM=AM-AC=\frac{4R\sqrt{7}}{7}-\frac{R\sqrt{7}}{4}=\frac{9R\sqrt{7}}{28}\)

Xét tg vuông MEC và tg vuông AHC có \(\widehat{ECM}=\widehat{ACH}\) (góc đối đỉnh) => tg MEC đồng dạng tg AHC)

\(\Rightarrow\frac{CE}{AC}=\frac{MC}{CH}\Rightarrow CE=\frac{AC.MC}{CH}=\frac{\frac{R\sqrt{7}}{4}.\frac{9R\sqrt{7}}{28}}{\frac{R\sqrt{3}}{4}}=\frac{3R\sqrt{3}}{4}\)

d/ Giao đường tròn ngoại tiếp tg ACE là gia 3 đường trung trực 

Ta có A cố định, K cố định nên đường trung trực của 

24 tháng 8 2019

O x y M A B I z

Gọi I là trung điểm  OA

Xét B trùng O 

=> M trùng I

Xét B không trùng O

Ta có : \(\widehat{xOy}=90^o\)

=> Tam giác AOB vuông tại O có M là trung điểm AB

=> OM=1/2 AB

=> OM=MA

OA cố định

=> M nằm trên đường trung trực đoạn OA

Như vậy B chuyển động trên tia  Oy thì M chuyển động trên tia Iz thuộc đường trung trực đoạn OA