K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

O x y G E A D B C

CM: Xét t/giác OCA và t/giác ODB

có:  OC = OD (gt)

  \(\widehat{O}\) : chung

 OA = OB (gt)

=> t/giác OCA = t/giác ODB (c.g.c)

=> \(\widehat{OCA}=\widehat{ODB}\)   (2 góc t/ứng)

Ta có: OB + BC = OC

  OA + AB = OB

mà OB = OA (gt); OC = OB (gt)

=> BC = AB

Xét t/giác BEC có: \(\widehat{BEC}+\widehat{EBC}+\widehat{BCE}=180^0\)(tổng 3 góc của 1 t/giác)

Xét t/giác AED có: \(\widehat{AED}+\widehat{EAD}+\widehat{ADE}=180^0\) (tổng 3 góc của 1 t/giác)

Mà \(\widehat{BCE}=\widehat{EDA}\) (cmt); \(\widehat{CEB}=\widehat{AED}\) (đối đỉnh)

=> \(\widehat{CBE}=\widehat{EAD}\)

Xét t/giác EBC và t/giác EAD

có: BC = AD (cmt)

  \(\widehat{BCE}=\widehat{ADE}\) (cmt)

  \(\widehat{EBC}=\widehat{EAD}\) (cmt)

=> t/giác EBC = t/giác EAD (g.c.g)

=> EC = ED (2 cạnh t/ứng)

Xét t/giác OEC và t/giác OED

có: OC = OD (gt)

   OE : chung

  EC = ED (cmt)

=> t/giác OEC = t/giác OED (c.g.c)

=> \(\widehat{COE}=\widehat{EOD}\) (2 góc t/ứng)

=> OE là tia p/giác của góc COD (1)

Xét t/giác OCG và t/giác ODG

có: OC = OD (gt)

  OG : chung

  CG = DG (gt)

=> t/giác OCG = t/giác ODG (c.c.c)

=> \(\widehat{COG}=\widehat{DOG}\)(2 góc t/ứng)

=> OG là tia p/giác của góc COD (2)

Từ (1) và (2) => OE \(\equiv\)OG

=> O; E: G thẳng hàng

27 tháng 12 2019

Câu hỏi của Song Ngư - Toán lớp 7 - Học toán với OnlineMath

16 tháng 12 2021

Tự vẽ hình

Ta có:

AC=OA+OCAC=OA+OC

BD=OB+ODBD=OB+OD

mà AC=BDAC=BD (gt) , OA=OBOA=OB (gt)

⇒OC=OD⇒OC=OD

Xét △OAD△OAD và △OBC△OBC có

OA=OBOA=OB (gt)

ˆAOD=ˆBOCAOD^=BOC^ (đối đỉnh)

OD=OCOD=OC (cmt)

⇒△OAD=△OBC⇒△OAD=△OBC (c.g.c)

⇒AD=BC⇒AD=BC (hai cạnh tương ứng)

b)

Do △OAD=△OBC△OAD=△OBC (cmt)

⇒ˆODA=ˆOCB⇒ODA^=OCB^ (hai góc tương ứng)

và ˆOAD=ˆOBCOAD^=OBC^ (hai góc tương ứng)

Ta có:

ˆOAD+ˆCAE=1800OAD^+CAE^=1800

ˆOBC+ˆDBE=1800OBC^+DBE^=1800

mà ˆOAD=ˆOBCOAD^=OBC^ (cmt)

⇒ˆCAE=ˆDBE⇒CAE^=DBE^

Xét △EAC△EAC và △EBD△EBD có
ˆCAE=ˆDBECAE^=DBE^ (cmt)

AC=BDAC=BD (gt)

ˆACE=ˆEDBACE^=EDB^ (do ˆOCB=ˆODAOCB^=ODA^ -cmt)

⇒△EAC=△EBD⇒△EAC=△EBD (g.c.g)

c)

Xét △AOB△AOB có OA=OBOA=OB (gt)

⇒△AOB⇒△AOB cân tại OO

⇒ˆOBA=ˆOAB⇒OBA^=OAB^

Xét △COD△COD có OC=ODOC=OD (cmt)

⇒△COD⇒△COD cân tại OO

⇒ˆOCD=ˆODC⇒OCD^=ODC^

Ta có:

ˆAOB+ˆOBA+ˆOAB=1800AOB^+OBA^+OAB^=1800

ˆCOD+ˆOCD+ˆODC=1800COD^+OCD^+ODC^=1800

mà ˆOBA=ˆOABOBA^=OAB^(cmt), ˆOCD=ˆODCOCD^=ODC^ (cmt)

⇒ˆAOB+2ˆOBA=1800⇒AOB^+2OBA^=1800

ˆCOD+2ˆODC=1800COD^+2ODC^=1800

mà ˆAOB=ˆCODAOB^=COD^ (đối đỉnh)

⇒ˆOBA=ˆODC⇒OBA^=ODC^

mà chúng ở vị trí so le trong

⇒AB//CD

11 tháng 12 2021

giúp mình với mình cần rất gấp

11 tháng 12 2021

a: Xét ΔOAC và ΔODB có 

OA=OD

\(\widehat{O}\) chung

OC=OB

Do đó: ΔOAC=ΔODB