K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

Làm bài lớp 7 cho vui :)

a. Xét ΔOADvà ΔOCB:

Ta có: ˆO góc chung

OC=OA

CD=AB (OC=OA và OD=OB)

Vậy ΔOAD = ΔOCB (c.g.c)

Vậy ˆODA=ˆOBC (góc tương ứng)

Xét ΔABC và ΔCDA:

Ta có:

AC cạnh chung

ˆODA=ˆOBC

CD=AB (OC=OA và OD=OB)

Vậy ΔABC = ΔCDA(g.c.g)

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Lời giải:

a) Xét tam giác AOD và COB có:

\(AO=CO\) (giả thiết)

\(OD=OB\) (giả thiết)

\(\widehat{O}\) chung

\(\Rightarrow \triangle AOD=\triangle COB (c.g.c)\) (đpcm)

b) 

Vì \(OA=OC; OB=OD\Rightarrow OB-OA=OD-OC\) hay \(AB=CD\)

\(OB=OD\) nên tam giác OBD cân tại O. Do đó \(\widehat{OBD}=\widehat{ODB}\) hay \(\widehat{ABD}=\widehat{CDB}\)

Xét tam giác ABD và CDB có:

\(BD\) chung 

\(\widehat{ABD}=\widehat{CDB}\) (cmt)

\(AB=CD\) (cmt)

Do đó $\triangle ABD=\triangle CDB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Hình vẽ:undefined

16 tháng 3 2023

Sửa `a)` CM tam giác OAD=tam giác OCB

`a)`

Xét `Delta OAD` và `Delta OCB` có :

`{:(OD=OB(GT)),(hat(O)-chung),(OA=OC(GT)):}}`

`=>Delta OAD=Delta OCB(c.g.c)(đpcm)`

`b)`

`Delta OAD=Delta OCB(cmt)=>hat(D_1)=hat(B_1)` (  2 góc t/ứng )

Có `OC=OA;OB=OD(GT)`

`=>OB-OA=OD-OC`

hay `AB=CD`

Có `OC=OA(GT)`

`=>Delta OAC` cân tại `O`

`=>hat(C_1)=hat(A_1)`

mà `hat(C_1)+hat(ACD)=180^0` ( kề bù )

`hat(A_1)+hat(CAB)=180^0` ( kề bù )

nên `hat(ACD)=hat(CAB)`

Xét `Delta ACD` và `Delta CAB` có :

`{:(hat(D_1)=hat(B_1)(cmt)),(CD=AB(cmt)),(hat(ACD)=hat(CAB)(cmt)):}}`

`=>Delta ACD=Delta CAB(c.g.c)(đpcm)`