Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: MA=MB
a)
Xét \(\Delta\)OAC và \(\Delta\)OBC có:
^CAO = ^CBO ( = 90\(^o\))
OC chung
^AOC = ^BOC ( OC là phân giác ^xOy)
=> \(\Delta\)OAC = \(\Delta\)OBC ( cạnh huyền - góc nhọn) => OA = OB
b) \(\Delta\)OAC = \(\Delta\)OBC => CA = CB ; ^BCO = ^ACO
Xét \(\Delta\)IAC và \(\Delta\)I BC có: CA = CB ; ^BCI = ^ACI ( vì ^BCO = ^ACO ) ; CI chung
=> \(\Delta\)IAC = \(\Delta\)IBC ( c.g.c) (1)
=> IA = IB => I là trung điểm AB (2)
c) từ (1) => ^AIC = ^BIC mà ^AIC + ^BIC = 180\(^o\)
=> ^AIC = ^BIC = \(90^o\)
=> CI vuông góc AB
=> CO vuông goác AB tại I (3)
Từ (2) ; ( 3) => CO là đường trung trực của đoạn thẳng AD.
a: ΔOAB cân tại O
mà OC là phân giác
nên OC vuông góc AB và C là trung điểm của AB
b: Xét tứ giác OAMB có
C là trung điểm chung của OM và AB
=>OAMB là hình bình hành
=>OA//MB và OB//MA
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
Suy ra: AC=BC và \(\widehat{OAC}=\widehat{OBC}\)
Ta có: \(\widehat{OAC}+\widehat{xAC}=180^0\)
\(\widehat{OBC}+\widehat{yBC}=180^0\)
mà \(\widehat{OAC}=\widehat{OBC}\)
nên \(\widehat{xAC}=\widehat{yBC}\)
b: Ta có: ΔOAC=ΔOBC
nên CA=CB
Ta có: OA=OB
nên O nằm trên đường trung trực của AB\(\left(1\right)\)
Ta có: CA=CB
nên C nằm trên đường trung trực của AB\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra OC là đường trung trực của AB
hay OC\(\perp\)AB
a) Đề sai rồi bạn
b) Xét ΔOAB và ΔOCB có
OA=OC(gt)
\(\widehat{AOB}=\widehat{COB}\)(OB là tia phân giác của \(\widehat{AOC}\))
OB chung
Do đó: ΔOAB=ΔOCB(c-g-c)
Suy ra: AB=CB(hai cạnh tương ứng)
Ta có: OA=OC(gt)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=CB(cmt)
nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OB là đường trung trực của AC
hay OB\(\perp\)AC(đpcm)